NEEDHAM HIGH SCHOOL

CLASSROOM EXPANSION FEASIBILITY STUDY

FINAL REPORT 14 APRIL 2017

260 Merrimac St. Bldg 7, 2ndFlr•Newburyport•Massachusetts Phone: 978-499-2999 • Fax: 978-499-2944 212 Battery Street• Burlington•Vermont Phone: 802.863.1428 • Fax: 802.863.6955 www.doreandwhittier.com

TABLE OF CONTENTS

TABLE OF CO	NTENTS AND ACKNOWLEDGEMENTS	Α
	TABLE OF CONTENTS AND ACKNOWLEDGEMENTS	A-1
INTRODUCTIC	n and Executive Summary	В
	Executive Summary	B-1
Нідн Ѕсноо	- Existing Conditions Assessment	c
	Existing Building Data & Architectural Assessment	C-1
	Existing Building Plans	C-2
	STRUCTURAL	C-3
	Mechanical	C-4
	Electrical	C-5
	Plumbing	C-6
	Fire Protection	C-7
ENROLLMENT	PROJECTIONS (DRAFT – TO BE UPDATED 4/18/2017)	D
	ENROLLMENT PROJECTIONS - OVERVIEW AND ANALYSIS	D-1
SPACE NEEDS	Analysis	Е
	Space Needs Analysis	E-1
	SPECIAL EDUCATION; EXISTING AND DESIRED SPACE INFORMATION	<u> </u>
CONCEPTUAL	Options	F
	CONCEPTION OPTIONS SUMMARY	E_1
		F-1
		ı-z
Gymnasium	A RENOVATIONS	G
CHILLER & BO	DILER ASSESSMENT	Н

COST ESTIMATES & PROJECT BUDGETSJ									
Costing Summary	J-1								
Classroom Expansion	<u>J-2 то</u> J-6								
GYM A RENOVATIONS	J-7								
AIR COOLED CHILLER REPLACEMENT	J-8								
BOILER & HEATING SYSTEM OPTIMIZATION	J-9 то J-10								

Appendix	K
Appendix item 1 – Meetings Timeline	K-1
Appendix Item 2 – Final Joint SC and PPBC Presentation	K-2
Appendix Item 3 – McKibben Report	К-З
Appendix Item 4 – School District Map	К-4

ACKNOWLEDGEMENTS

Dore & Whittier Architects would like to acknowledge the following individuals for their dedication to the Town of Needham for their assistance to the Design Team.

Public Facilities

Carys Lustig, Acting Director – Operations ** Steve Popper, Director Design & Construction * Hank Haff, Senior Project Manager – Construction * John Gass, HVAC Technician

Board of Selectmen

Matt Borelli, Chairman **

Town Manager's Office

Kate Fitzpatrick, Town Manager ** Dave Davison, Asst. Town Manager – Finance **

Finance Committee

Barry Coffman * Rick Zambone **

School Committee

Susan B. Neckes, Chair * Heidi Black, Vice-Chair ** Michael Greis Andrea Longo Carter Kim Marie Nicols Aaron Pressman

High School Admin. / Staff

Aaron Sicotte, Principal * (on both PPBC & Task Force) Kerri Cence, Lead Secretary Casey Palmer, Counselor, Special Ed. Teacher * Andrew Lawrence, Teacher - Math Dept. Patrick Gallagher, Chair - English Dept. * Jennifer Regrut, Chair - Science Dept.* Mike Hirsh, Teacher – Math Dept.** Anne Weinstein, School Council / Parent * Nathan Simani, Student *

Public Schools Admin. / Staff

Dan Gutenkanst, Superintendent of Schools ** Terry Duggan, Director of Student Learning ** Anne Gulati, Finance Director **

PPBC

George Kent, Chairman ** Stuart Chandler Richard Creem Natasha Espada Roy Schifilliti Roy Silverstein Gene Voloshin Heidi Black, School Committee Rep.** Aaron Sicotte, High School Rep. **

* Working Group Member

** Task Force Member

Design Team:

Architect/Project Manager

Dore & Whittier Architects, Inc. 260 Merrimac Street Bldg. 7 Newburyport, MA 01950 p. 978-499-2999

Civil Engineers

Nitsch Engineering 2 Center Plaza - Suite 430 Boston, MA 02108 p. 617-338-0063

Boiler & Chiller MEP Engineers

Shekar & Associates, Inc. 775 Pleasant St., Unit 14 East Weymouth, MA 02189 p. 781- 337-2952

Structural Engineers

Engineers Design Group 350 Main Street Malden, MA 02148 p. 781-396-9007

HVAC, Electrical, Plumbing, Fire Protection Engineers

Garcia Galuska DeSousa 370 Faunce Corner Road Dartmouth, MA 02748 p:508-998-5700

Cost Estimating

PM&C 20 Downer Avenue; Suite 1C Hingham, MA 02043 p. 781- 740-8007

INTRODUCTION

In August 2016 the Town of Needham submitted a Request For Qualification to review the need for a High School classroom expansion. The original high school was constructed on the existing site in 1930. In 2008 a major renovation and addition was constructed to accommodate a student population of 1450 students. The current student population is 1659 and the enrollment is projected to exceed 1800 by school year 2022-23 and peak in school year 2024-25 at 1835 students.

Since 2008 several non-instructional spaces have been converted to classrooms, and some instructional spaces have been subdivided to accommodate the growing need for teaching spaces. These spaces include storage spaces, and offices. A cafeteria expansion was completed in 2016 to help alleviate some of the over-crowding that occurs within this space and has influenced scheduling.

The Classroom Expansion RFQ requested a review of the existing school schedule to assure the efficient use of existing space, consideration of the use of technology as a means to reduce the need for additional instructional space, and to determine if there is a need for additional instructional space how much space is required to meet the projected enrollment of 1700 – 1800 students.

Dore & Whittier was awarded this project in December of 2016 and began the study of the facility existing conditions, the functional use of space, and a full analysis of the existing schedule in late December 2016. D&W developed a two prong approach to this study. The first part of the study assessed the existing building and site to determine potential locations for additions and renovations and assessed the infrastructure to develop an understanding of the necessary upgrades to both building and infrastructure that would be required for additions and renovations. In the second part of the study, which occurred simultaneously with the first, D&W studied the school schedule, met with teachers, students, and administrators, developed in-depth analysis of the use and limitations of each instructional space within the building, and arrived at an agreed upon number of additional classrooms and educational spaces needed to maintain the quality of educational delivery expected at NHS.

From these two analysis the Design Team developed several options. The options were then evaluated based on their ability to meet the program needs. Time to completion, disruption to the ongoing educational process, and project costs were also considerations in the evaluation process. Over the course of several months each of the options were refined and the final evaluation of the options determined the preferred alternative. These options and the final preferred option are outlined in the Executive Summary and shown in greater detail in the body of the report.

Building Site

Original 1930's High School Building – view from Admiral Gracey Drive

2008 Addition - view of entrance from Webster Street

2008 Gym "B" Addition – view from Admiral Gracey Way

2016 Cafeteria Expansion – view from Webster St. Entrance

EXECUTIVE SUMMARY

As part of the initial study the Design Team identified potential locations for classroom expansion and building renovations. These options included renovations and additions within the building footprint as well as additions to the existing building. Four potential locations were identified.

- 1) Addition of an intermediate floor within the existing two story library
- 2) Addition of a roof over the existing courtyard
- 3) Addition of a new wing on the southwest (Admiral Gracey Drive) side of the building
- 4) Addition of a new wing on the east (Webster Street) side of the building

Additional areas were initially identified, such as the north side of the existing gymnasiums and the southeast side of the classroom wing. However, these locations proved either to remote or did not provide buildable area for further consideration.

With these potential locations identified D&W and their consultant team of structural, mechanical, electrical, plumbing and fire protection engineers reviewed the existing conditions and documents to determine if the current facility could support the proposed additions or renovations.

FACILITY ASSESSMENT FINDINGS

The existing facility was assessed under the existing building code, the 8th Edition IEBC. It is important to note that the 9th Edition of the IEBC and IBC are scheduled to be issued in July of 2017 and are expected to have a six month implementation timeline. After January 2018 it is assumed that all construction will need to conform to the 9th Edition of the building codes.

The IEBC provides three compliance methods for additions and renovations to existing buildings. The Prescriptive Compliance Method, the Work Area Compliance Method, and the Performance Compliance Method. These methods are outlined further in the Existing Conditions Structural Report. The compliance method chosen for the renovation or additions to the building will depend largely on the final design. Options that included the placement of an intermediate floor in the library or a roof over the existing courtyard will increase the demand / capacity ratio of the existing columns and foundation. However, this increase is not greater than the code allows. Therefore, structural re-enforcement to the existing columns and footings is not expected to be required for these design options. Options that are designed to be structurally independent of the existing building will be designed to meet current codes for seismic and structural capacity. Based on the proposed options structural upgrades to the existing building will not be triggered. The Prescriptive Compliance Method has been suggested for the construction of either the addition and renovation options or the structurally independent options.

The existing heating and cooling plants are currently experiencing some malfunctions. The replacement of the chiller and one of the four boilers, as well as a resolution to the variable gas pressure currently

being supplied to the building is part a separate study that has been conducted congruent to this study. A new boiler and chiller have been proposed as part of that study. These will be sized to accommodate the renovations and additions to the building. Independent distribution units will be designed to accommodate the new addition or renovated spaces. All new systems will be tied into the Town's building management system.

The current electrical system and the stand by emergency power are adequately sized to support the renovation or addition options that have been designed. There is room in the fire alarm panel for expansion, which would be required for the each of the options developed.

The plumbing and fire protection systems are both adequately sized for the existing building and could support the design options developed.

EDUCATIONAL SPACE NEEDS FINDINGS

Enrollment Forecast

In December of 2016, McKibben Demographics produced an enrollment forecast through the 2031-2032 school year for Needham Public Schools. Their study included forecasts by major grade groupings and for each elementary school catchment area (included in Appendix item K-4). McKibben's methodology differs slightly from other projections produced by the District in the past. It not only took into account the cohort survival ratios of students year to year, but also accounted for localized changes in the residential construction market, the demographic profiles of residents in each elementary catchment area, and the current economic conditions that may impact housing stock turnover. It was a more Needham-specific and nuanced methodology than had been provided by others previously.

McKibben's forecast concluded that the District overall will experience a growth, peak, then decline trajectory over the next fifteen years. It concluded that Needham High School will experience continued growth for the 2017-18 school year through the year 2024-2025, peaking at 1,835 for grades 9th-12th. In the latter half of the forecast, McKibben concludes that the Needham High School enrollment will begin a slow decline to 1,749 students in the 2031-2032 school year – 90 students higher than the enrollment for 2016-17 and 300 hundred higher than the original design enrollment.

Every forecast contains uncertainty. In general terms, the further into the future a forecast is, the greater the uncertainty. Significant changes in the residential interest rates or other market forces impact certainty for enrollment forecasts. For high school projections, however, there tends to be greater certainty because the majority of the students, even in a fifteen year forecast, are already attending school

in the District. Given these considerations, McKibben Demographics' forecasts are typically within 2% of actual realized enrollment.

D&W collaborated with members of the Working Group, the Permanent Public Building Committee and the School Committee to interpret McKibben's findings and to identify an enrollment planning target of 1800 9th-12th grade students. That target represents all general education, special education, and ungraded students (older than 18 who still receive services in the District).

Space Needs Analysis

In order to determine if space needs exist or will exist at Needham High School, D&W performed a detailed analysis of every instructional space and of every section of each course offered. The analysis included documentation of existing space usage, numbers of students enrolled in each course, and the utilization of each instructional space. In general terms, this analysis allowed D&W to fully understand the complexities of Needham High School's daily schedule, its class size practices, and the nuances that make Needham High School unique among its peer schools. D&W's analysis also revealed that enough complexity and nuance exists to render typical laws of averages and rules of thumb incapable of accurately determining needs. The bulleted list below documents D&W key findings:

- Typical analytical and planning benchmarks based on MSBA Guidelines:
 - o 23 students per instructional space
 - o 85% Utilization¹
 - o 887 SF General Education Classrooms to serve 23 students²
 - 2016-17 Average Students per Classroom = 19.92³
- 2016-17 Average Utilization Rate = 84%
- Most General Education Classrooms are 725 SF (Sized for 19 students using MSBA benchmarks)
- Over-utilization and over-crowding in the Core Academic disciplines are offset by under-utilization and under-crowding in the Fine & Performing Arts departments. However, increasing the utilization of the Fine & Performing Arts spaces is challenging because doing so would result in fewer offerings and reduced access to these programs for certain students due to scheduling conflicts.⁴
- Forty-five percent of Core Academic courses have more than 23 students in each section. Some sections have as many as 28 students in a 725 SF space.
- Certain general education courses are capped at sizes well below the benchmarks to best serve the needs of students. This educational decision impacts average students per classroom calculations. Increasing these caps will negatively impact the educational experience of students.
- The greatest space needs appear to be in the Core Academic disciplines (Math, English, Social Studies, World Languages, and Science).

¹ Utilization refers to the percentage of the school day (calculated by minutes or by periods per cycle) for which students occupy instructional spaces.

² MSBA's guideline for high school classrooms is actually a range (800 SF – 925 SF). 877 SF is the numeric average of that range.

³ Excludes Special Education Courses

⁴ Increasing utilization for these spaces may also result in an inappropriate environment (e.g. English in a Chorus Room. Spanish in an Art Room. Math in the Midi Lab.)

• Even with the recently repurposed spaces (converting spaces designed for other purposes into classrooms), there appears to be a need for three additional general education classrooms to serve the current population.

Math, English, Social Studies, and World Languages

- Average Utilization Rate = 90%
- Average Students Per Section = 20.88
- Total Sections w/ Students ≥ 23 = 147 or 45%
- Total Sections w/ 16 ≤ Students < 23 = 132 or 40%
- Total Sections w/ Students < 16 = 50 or 15%</p>
- 329 Sections @ 85% = 55 Classrooms, 52 Existing
- To serve a population of 1800 students, 60 general classrooms and 15 Science labs are needed. Eight more classrooms and one more science lab than exist today. These spaces would relieve overcrowding in the Core Academic disciplines and allow the District to schedule a maximum of 24 students per section while still allowing lower caps in courses that are in the best interests of students. Proposed additional spaces would not relieve the over-utilization of Core Academic spaces, but would maintain the status quo for utilization even when enrollment increases. This number of classrooms will also require that spaces converted to classrooms continue to serve as classrooms and not revert to their original design purpose.
 - Given the wide variety of students per section, and to provide the greatest flexibility possible, D&W recommends that the 8 general education classrooms are executed in two different types:
 - 6 @ 925 SF (24 students x 38.5 SF per student)
 - 2 @ 1200 SF, dividable into 4 @ 600 SF (31 students x 38.5 SF per student)
 - D&W recommends that the Science Lab be generalized and capable of serving any of the Science disciplines, be 1440 SF, and include an adjacent Science Prep space at 200 SF.
- Should the District choose to absorb the enrollment forecast within its existing facility without additional space, over-utilization and over-crowding conditions would worsen.

Math, English, Social Studies, and World Languages

- Average Utilization Rate = 90%
 97%⁵
- Average Students Per Section = 20.88
 22.67⁶
- Total Sections w/ Students $\ge 23 = 147$ or 45% → $60\%^7$
- Total Sections w/ 16 ≤ Students < 23 = 132 or 40% → 28%
- Total Sections w/ Students < 16 = 50 or 15%
 12%

⁵ Extremely high utilization rates require sharing of spaces by faculty, faculty members displaced during prep times, and make it more difficult for students to locate teachers when needing assistance.

⁶ Higher averages mean higher maximums, as many as 34 students in some sections, and limits the ability to cap sections at lower numbers in the best interests of students.

⁷ Given the square footage of existing classrooms, high students per section translates into instructional limitations. Faculty and staff will not be able to execute certain activities (e.g. small group exercises or movement activities) simply due to the volume of furniture in the space.

- It is difficult to project Special Education populations. McKibben did not provide a forecast for Special Education. D&W's analysis assumed the current percentage of the overall population would require Special Education and Student Support services in the future. Interviews with administrators, faculty and staff in the Special Education department revealed a need for an additional 5,500 net⁸ square feet of instructional, testing, and administrative space to serve a population of 1800 students.
- D&W also conducted a faculty and staff survey to better understand perceived needs. The survey
 results corroborated the findings in D&W's analysis that more general education spaces are
 needed. However, the survey also revealed a perceived need for more student collaboration
 spaces. This perception was corroborated by students serving on the Working Group and is
 consistent with current best practices for 21st Century learning places.
 - D&W recommends that design explorations include intentional student collaboration spaces with a wide variety of features.
 - Some Noisy
 - Some Quiet
 - Some Open
 - Some Enclosed
 - Access to WiFi
 - Lots of Vertical Writing Surface
- Access to Digital Display
- Some Hard Furnishings
- Some Soft Furnishings
- Highly Mobile Furnishings
- Food Friendly

⁸ Net Square Feet refers to the usable floor area of a space. It does not include wall thicknesses, corridors, toilet rooms, or any space associated with building infrastructure (e.g. boiler rooms, electrical closets, etc.)

OPTION DEVELOPMENT

Based on the educational space needs the Working Group developed several goals for the design options. These goals are:

- 1) Reach 85% utilization rate in core academic classes (Math, English, Social Studies, and World Languages). At a minimum the utilization rate should not increase.
- 2) Provide 8 additional general classrooms of various sizes for flexibility.
- 3) Provide 1 additional science room with prep.
- 4) Provide up to 5,500 sq. ft. additional instructional space special education.
- 5) Provide student collaboration space.

As noted above the design team identified four potential locations for renovations or additions to the existing building. With the design goals as a guide several options were developed. These options are noted on the site plan below. An outlined of each option and a comparative matrix that shows to what extent each option met the goals above is included.

Building OptionsA added classroomsImage: A class option of the class option option of the class option option option option option option optio

OPTION A : <u>Do Nothing</u>: This option reviewed the effects on the educational program if no additional classrooms were added to the facility. The effects of this option are noted on page B-1-8 and include the increase of the average utilization rate from 90% to 97%, do not provide any new classrooms or science labs, do not add additional space for special education and do not provide student collaboration space. With the anticipated enrollment increase this option does not meet the educational standards set by the Needham School District but does allow the District to assess the results of not adding space to the existing building. This Option did not meet any of the goals outlined by the Working Group.

OPTION B : <u>Relocate Media Center to New Intermediate Floor</u>: This option proposes that a new intermediate floor be added to the existing Media Center. The new floor and dormered roof would provide the school with a new library on the fourth floor, four additional classrooms, approximately 27% of the Special Education square foot needs and one Science and Prep Room. The estimated project cost for this Option is \$8.6 million dollars</u>. The opportunities of this option include the ability to provide additional space within the existing building footprint and keep new classrooms near the other core classroom spaces. The low cost of this option is may be considered an opportunity, however, the value achieved for the cost must be considered. Constraints include the reduced size of the new library, invasive construction within the existing building, and not meeting the design goals for the project.

PROPOSED NEW FLOOR

VIEW OF EXISTING LIBRARY

Building Option B

Net gain:

- (1) Science Lab + Prep
- (2) Special Ed. Classrooms GAINS LOSSES + 2 @750 sf none

Comparative Matrix

	SPA	CE(S) ADDED:		SPAC	E(S) LOST:		NET	SPACE(S):		ADDITIONAL CONSIDERATIONS			
	qty.	nsf size	type	qty.	nsf size	type	qty.	nsf size	type			GOALS	
OPTION B	3	1,200		0	1,200		3	1,200			CLASSROOMS	8	50%
(internal renovations at	3	925	CLASSROOMS	0	925	CLASSROOMS	3	925	CLASSROOMS		SCI. + PREP	1	100%
Media Center area(s) only)	1	750		3	725		-2	725-750			SPECIAL ED.	5,500 SF	27%
	7	4,728		3	2,175		4	2,553	TOTAL CLRMS		CONSTRAINTS		
	2	750	SPECIAL EDUCATON	0	0	SPECIAL EDUCATON	2	750	SPECIAL EDUCATON		Extensive Constru	Building	
\$8.6m	2	1,500		0	0		2	1,500	TOTAL SPECIAL ED.		Reduced / Remot	e Media Ce	enter
90.0III	1	1,640	SCIENCE LAB + PREP	0	0	SCIENCE LAB + PREP	1	1,640	SCIENCE LAB + PREP		Reduced Departm	ent Office	
	1	1640		0	0		1	1640	TOTAL SCI. + PREP		OPPORTUNITIES		
	1	2500	COLLABORATION	0	0	COLLABORATION	1	2500	COLLABORATION		Renovations Onl	y	
	1	2500		0	0		1	2500	TOTAL COLLABORATION	4			
		10,368.00	TOTAL ADD SQ. FT.		2,175.00	TOTAL LOST SQ. FT.		8,193.00	TOTAL SQ. FT.				

OPTION C : <u>Classroom Addition on the Southwest Corner</u>: This option proposes a new four story addition placed on the corner of the existing building. The lowest level would add science rooms and labs and the upper floors would add general classrooms. Access to the new space would require the demolition of existing classrooms on each floor. The new addition would require some reorganization of the existing access / delivery driveway and parking. This option achieves six general classrooms total, one additional science and prep room, approximately 50% of the Special Education instructional space and some student collaboration space. The project cost for the option is estimated at \$9.8 million dollars. The opportunities of this option include the ability to provide additional space without the invasive construction within the existing building and keep new classrooms near the other core classroom spaces. The relatively low cost of this option is may be considered an opportunity, however, the value achieved for the cost must be considered since this option meets only 75% of the classroom goals and 50% of the Special Education goals. Constraints include the disruption to adjacent classrooms during construction, loss of some parking, disruption to the Admiral Gracey Drive access, and the need to provide up to four temporary classrooms until construction is completed.

Building Option C

Comparative Matrix

	SPAC	E(S) ADDED:		SPAC	E(S) LOST:		NET	SPACE(S):		ADDITIONAL CONSIDERATIONS			
OPTION C	qty.	nsf size	type	qty.	nsf size	type	qty.	nsf size	type			GOALS	
(Corner addition	0	1,200		0	1,200		0	1,200	CLASSROOMS		CLASSROOMS	8	75%
	9	925	CLASSROOMS	1	900	CLASSROOMS		925-900			SCI. + PREP	1	100%
at SW corner)	0	750		2	2 750 -2		-2	750			SPECIAL ED.	5,500 SF	50%
	9	8,325		3	2,400		6	5,925	TOTAL CLRMS		CONSTRAINTS		
	3	925	SPECIAL EDUCATION	0		SPECIAL EDUCATION	3	925	SPECIAL EDUCATION		Tempoary Classrooms Needd		
	3	2775		0	0		3	2,775	TOTAL SPECIAL ED.		Impact to Adjacent Classrooms		
\$9.8m	2	1,540	SCIENCE LAB	1	1,440	SCIENCE LAB	1	1,640	SCIENCE LAB + PREP		Impact to Adjace	nt Site Ar	ea
	2	3,080		1	1,440		1	1,640	TOTAL SCI. + PREP		OPPORTUNITIES		
	4	1,000	COLLABORATION	0	0	COLLABORATION	4	1,000	COLLABORATION		Single Phase Con	struction	
	4	4,000		0	0		4	4,000	TOTAL COLLABORATION				
		18,180.00	TOTAL ADD SQ. FT.		3,840.00	TOTAL LOST SQ. FT.		14,340.00	TOTAL SQ. FT.				

OPTION D : Relocation of the Media Center to the Courtyard: This option proposes a that a skylight roof system is placed over the existing courtyard to enclose the courtyard and create a centralized library / media center. This option also includes the installation of an intermediate floor in the existing library (similar to Option B) to create additional classrooms on two levels. The relocation of office spaces to be adjacent to the library lower level would create more classrooms on the upper levels of the 2008 addition and the installation of a "Hellerup" stairway connects the second level to the center of the library creating collaboration and interactive space at the heart of the building. This option achieves eight new general classrooms, one science and prep room, and approximately 40% of the Special Education instructional space noted by the Working Group. Student collaboration space is included within the new library and in the corridors outside the existing library. The project cost for the option is estimated to be \$22.3 million dollars. The opportunities of this option include the location of the media center at the heart of the building, reducing the current wayfinding issues, the ability to connect the new library to the first floor and the second floor and provide student collaboration space. Additional classrooms are provided within the core classroom areas. Constraints include the cost of this option. This option is the most costly of the five options studied. It does not achieve 100% of the goals and the construction of this option will need to be phased creating a longer period of disruption to students.

PROPOSED ELEVATION OF COURTYARD ENCLOSURE

Building Option D

Net gain:

• (1) Science + Prep GAINS LOSSES

+ 1 @ 1,640 sf none

 (8) Classrooms GAINS

GAINS	LOSSES
+ 5 @ 750 sf	- 8 @ 750 sf
+ 2 @ 800 sf	
+ 6 @ 950 sf	
+ 3 @ 1200 sf	

- (3) Special Ed. Classrooms GAINS + 3 @ 750 sf none
- (1) Collaboration Spaces

Comparative Matrix

	NET :	SPACE(S) ADD	DED:	NET	SPACE(S) LC	DST:	NET	SPACE(S):			ADDITIONA	L CONSIDE	RATIONS
OPTION D	qty.	nsf size	type	qty.	nsf size	type	qty.	nsf size	type			GOALS	
new Media Center	3	1,200		0	1,200		3	1,200			CLASSROOMS	8	100%
at Courtyard)	6	950	CLASSBOOMS	0	950	CLASSROOMS	6	950	CLASSROOMS		SCI. + PREP	1	100%
	2	800	CLASSROOMS	0	800		2	800			SPECIAL ED.	5,500 SF	41%
	5	750		8	750		-3	750			CONSTRAINTS		
	16	14,650		8	6,000		8	8,650	TOTAL CLRMS		Multi-phased Co	nstruction	
\$22.2m	3	750	SPECIAL EDUCATION	0	0	SPECIAL EDUCATION	3	750	SPECIAL EDUCATION		Extensive Constru	n Building	
922.3III	3	2250		0	0		3	2,250	TOTAL SPECIAL ED.		Reduced Media S	Size	
	1	1,640	SCIENCE LAB	0	0	SCIENCE LAB	1	1,640	SCIENCE LAB		Reduced Departr	nent Offic	es
	1	1,640		0	0		1	1,640	TOTAL SCI. + PREP		OPPORTUNITIES		
	1	2,500	COLLABORATION	0	0	COLLABORATION	1	2,500	COLLABORATION		Centralized Medi	a Center	
	4	2,500		0	0		4	2,500	TOTAL COLLABORATION	L			
		21,040.00	TOTAL ADD SQ. FT.		6,000.00	TOTAL LOST SQ. FT.		15,040.00	TOTAL SQ. FT.				

OPTION E : Relocation of the Media Center to Webster Street Addition: Option E proposes a new addition on the Webster Street side of the building adjacent to the existing building entrance. The addition would provide space for administration on the ground / entrance level and a new library media center on two floors above the administration wing. Placing both the library and the media center at the prominent front of the building provides many advantages for after school use of the library, wayfinding to both the library and the administration office and administrative views of the entrance. The new library could be enlarged to accommodate student collaboration space and would be located at the "knuckle" of the school, strengthening the connection between the old and new areas of the school. This option also includes the installation of an intermediate floor in the existing library (similar to Option B) to create additional classrooms on two levels. This option achieves eight new general classrooms, one science and prep room, and approximately 75% of the Special Education instructional space noted by the Working Group. Student collaboration space is included within the new library and in the corridors outside the existing library. The project cost for the option is estimated to be \$17.5 million dollars. The opportunities of this option include the location of the media center and the administrative offices at the front of the building, reducing the current wayfinding issues for both spaces, the ability to connect the old and new sections of the building, and provide student collaboration space. Additional classrooms are provided within the core classroom areas. Constraints include the cost of this option, and the multi-phased construction.

Building Option E

Net gain:

- (1) Science + Prep GAINS LOSSES
 + 1 @ 1,440 sf none

+ 2 @ / 50 3	- 5 @ /50 3
+ 2 @ 800 sf	
+ 4 @ 950 sf	
+ 3 @ 1200 sf	

- (5) Special Ed. Classrooms GAINS LOSSES + 3 @ 750 sf none
 - + 2 @ 950 SF
- (1) Collaboration Spaces

Comparative Matrix

	NET	SPACE(S) ADD	DED:	NET	SPACE(S) LC	DST:	NET	SPACE(S):		ADDITIONAL CONSIDERATIONS		
	qty.	nsf size	type	qty.	nsf size	type	qty.	nsf size	type		GOALS	
OPTION E	3	1,200		0	1,200		3	1,200		CLASSROOMS	8	100%
(new Media Center	4	950	CLASSBOOMS	0	950		4	950	CLASSROOMS	SCI. + PREP	1	100%
at Webster St. Entry)	2	800	CLASSROOMS	0	800		2	800		SPECIAL ED.	5,500 SF	75%
	2	750	1	3	750		-1	750		CONSTRAINTS		
	11	10,500		3	2,250		8	8,250	TOTAL CLRMS	Extensive Constr	uction w/i	n Building
	2	950		0	0		2	950		Multi Phase		
	3	750	SPECIAL EDUCATION	0	0	SPECIAL EDUCATION	3	750	SPECIAL EDUCATION	Construction impact to bus loop & parking		
	5	4150		0	0		5	4,150	TOTAL SPECIAL ED.	Construction imp	pact to bui	ilding entrance
\$17.5m	1	1,640	SCIENCE LAB	0	0	SCIENCE LAB	1	1,640	SCIENCE LAB	OPPORTUNITIES		
	1	1,640		0	0		1	1,640	TOTAL SCI. + PREP	New Media Cent	er	
	1	2,500	COLLABORATION	0	0	COLLABORATION	1	2,500	COLLABORATION	Centeralized Clas	srooms	
	1	2,500		0	0		1	2,500	TOTAL COLLABORATION	Improved Admir	. Connecti	on
		18,790.00	TOTAL ADD SQ. FT.		2,250.00	TOTAL LOST SQ. FT.		16,540.00	TOTAL SQ. FT.			

OPTION F : <u>Classroom Wing on Webster Street Addition</u>: Option F was developed from Option E. Taking some of the important factors such as the location of the Administration area and the strengthening the connection between the old side of the school and the newer side of the school. Option F strived to achieve the each of the goals outlined and reduce the number of phases and educational impact on students during construction. The proposed new addition on the Webster Street side of the building is adjacent to the existing building entrance. The addition would provide space for administration on the ground / entrance level and new classrooms on two floors above. Placing the administration area in this location provides clear wayfinding to this space, and views of the entrance area from the administration spaces. The new wing may accommodate student collaboration space, within the design and brings general classrooms closer to the center of the building providing a connection between the old and new areas of the school. This option achieves eight new general classrooms, one science and prep room, and approximately 80% of the Special Education instructional space noted by the Working Group. The project cost for the option is estimated to be \$11.4 million dollars. In assessing the value of the cost it is important to note that this option achieves the highest level of goals. Constraints include the cost of this option, and the separation of classrooms from the general classroom area.

Building Option F

Net gain:

- (1) Science + Prep GAINS LOSSES + 1 @ 1000 sf none
- (8) Classrooms GAINS LOSSES +7 @ 925 sf -1 @ 925 +2 @ 1200 sf
- (4) Special Ed. Classrooms GAINS + 2 @ 725 sf + 2 @ 925 sf + 1 @ 1100 sf
- (2) Collaboration Spaces

	NET	SPACE(S) AD	DED:	NET	SPACE(S) LO		NET	SPACE(S)-		1			RATIONS
	qty.	nsf size	type	qty.	nsf size	type	qty.	nsf size	type		//bbirriola/	GOALS	
OPTION F	2	1,200		0	1,200		2	1,200			CLASSROOMS	8	100%
(new Classroom Wing	7	925	CLASSROOMS	1	925	CLASSROOMS	6	925	CLASSROOMS		SCI. + PREP	1	100%
at Webster St. Entry)	0	725	1	0	725	1	0	725			SPECIAL ED.	5,500 SF	80%
	9	8,875		1	925		8	7,950	TOTAL CLRMS	1	CONSTRAINTS		
	1	1,100		0	1,100		1	1,100		1	Construction imp	oact to bu	s loop & parkir
	2	925	SPECIAL EDUCATION	0	925	SPECIAL EDUCATION	2	925	SPECIAL EDUCATION		Construction imp	oact to bu	ilding entrance
	2	725		0	725		2	725					
	4	4400		0	0		4	4,400	TOTAL SPECIAL ED.		OPPORTUNITIES		
\$11.4m	1	1,000	SCIENCE LAB	0	0	SCIENCE LAB	1	1,000	SCIENCE LAB		Improved Admin	. Connecti	ion
	1	1,000		0	0		1	1,000	TOTAL SCI. + PREP		Reduced impact	during co	nstruction
	2	800	COLLABORATION	0	0	COLLABORATION	2	800	COLLABORATION				
	1	1,600		0	0		1	1,600	TOTAL COLLABORATIO	N			
		15,875.00	TOTAL ADD SQ. FT.		925.00	TOTAL LOST SQ. FT.		14,950.00) TOTAL SQ. FT.				

Comparative Matrix

CONCLUSION

Over the course of several months the analysis and Options were presented to the Working Group, NHS Task Force, Needham School Committee, and PPBC. On March 21, 2017 the School Committee voted to recommend Option F for approval by the PPBC. A joint meeting was held on March 27, 2017 for the School Committee and the PPBC and vote proceed with Option F was unanimously approved by the PPBC.

EXSITING CONDITIONS

ARCHITECTURAL

Figure 1 – Webster Street Entry

Needham High School is situated on a hill overlooking Memorial Park, and is located very nearly at the geographical center of town. The original building was completed in 1930. Following World War II, the Town experienced a period of rapid growth, necessitating additions that were opened in 1955 and in 1967. Parts of these additions were then demolished in 2008 due to a complete renovation & new addition to the school. The \$62 million project consisting of a new building to the south of the original, which was opened in the fall of 2006. The next phase – a smaller wing, opened in the fall of 2007; and just recently the Cafeteria was expanded.

The entire facility remains in relatively decent shape, and for the most part meets current building, life safety, and energy codes. The facility is a mix of architectural styles spanning from early 20th century through to the contemporary addition completed in 2008 (*see fig. 4*). The original, and post-war era additions – including gym 'A' and adjacent portions of the structure, are constructed with masonry load bearing walls, consisting of a mix of pitched and flat roofs on 3 levels while the newer addition is of modern steel brace-

Figure 2 - View of original High School

frame and concrete slab construction of 4 levels for a facility total of 285,000 square feet. The lowest level – level 1, is at the west side of the newer addition and comprised mainly of science classrooms. The highest level – level 5, the top floor of the original historic school building, where four art studios, two enters, and two storage spaces exist. The three intermediate levels span from one end of the facility to the other – old and new. The main entrance, as well as administrative offices, the cafeteria, and several core academic spaces – were built as part of the 2006 expansion at level 2.

The newer addition was designed based on a target enrollment in 2004 of 1,450 students. The enrollment is now at approx. 1,650 and projected to grow to over 1,800 by 2024 / 2025 (refer to the Enrollment Projection and Space Needs sections for detailed analysis). The 2004-2008 addition was built to

NEEDHAM HIGH SCHOOL EXISTING CONDITIONS REPORT - ARCHITECTURAL

CLASSROOM EXPANSION STUDY

Massachusetts School Building Authority guideless and continues to perform well. Part of this large addition was constructed to the north side of the original high school building; a new gymnasium (Gymnasium 'B') – adjacent to gym 'A' (which was constructed in the 1950's). Other spaces housed in the original portion of the building include athletic locker rooms, fitness spaces, music instructional areas, and the auditorium. The largest portion of the 2004-2008 addition is to the south, and forms much of the current core academic classroom space and houses department offices, guidance, administration, and the media center.

As part of the 2004-2008 large-scale renovation / addition, a completely new physical plant was constructed to provide a facility-wide heating system hot water supply, cooling system chilled water supply, domestic hot water supply, and electrical distribution. As part of the feasibility study, both the boiler and temperature controls system, and the air-cooled chiller (Fig. 2) have been reviewed in detail (see associated sections of the report for full analysis, detail, recommendations, and cost estimates). Three of the four boilers have been shown to be in good shape, and

Figure 3 – decommissioned air-cooled chiller

expected to perform for at least another 10 years. The fourth has been decommissioned and is used for spare parts, as the manufacturer no longer produces replacement castings for the units installed in 2006. Key to the study was determining the cause(s) of the documented under-performing heating / gas supply system and to recommend repairs, as well as investigate options for emergency back-up / dual fuel systems. The air-cooled chiller (*fig. 3*) failed several years ago, and was deemed not repairable (see section for replacement plans information).

Figure 4 - Aerial View of High School showing building sections

The campus is surrounded by residential neighborhoods of three sides, and by Highland Avenue with Needham Memorial Park (the large open space & ball fields) in between. Primary vehicle access is to the south, via Admiral Gracey Drive – off Kingsbury Street. The bus drop-off area, as well as visitor and some staff parking, are off Webster Street on the east side. The site has both shallow and steep slopes, several parking lots, and a service area / loading dock zone outside the physical plan to the south. The facilities electrical service entrance equipment, diesel powered stand-by backup generator, gas service, as well as the air-cooled chiller unit are all located in this zone.

Figure 5 – Needham GIS Base Map of High School neighborhood

CLASSROOM EXPANSION STUDY

EXSITING SITE AND FLOOR PLANS

SITE PLAN - NOT TO SCALE

LEVEL 1 - NOT TO SCALE

LEVEL 2 - NOT TO SCALE

LEVEL 3 - NOT TO SCALE

LEVEL 5 - NOT TO SCALE

STRUCTURAL ASSESSEMENT

STRUCTURAL REPORT

EXECUTIVE SUMMARY:

This report is based on the structural engineer's visual observations made during a site visit in December 2016, a review of the additions and renovation drawings prepared by Engineers Design Group, dated October 8, 2004. The drawings for the original school were not available at this time. It should be noted that some of the proposed renovations are located at / near the addition constructed in 2004. The review of existing structural conditions did not involve the removal of any finishes or take measurements; report is limited to visual observations and assessment of the 2004 Structural Engineering documents.

The 2004 addition is a four-story rectangular classroom wing with an interior courtyard and a multi-story entry area / lobby. The structure consists of reinforced cast-in-place (CIP) concrete slabs supported on steel beams which span between both steel columns and girders. The columns are supported on traditional reinforced concrete spread footings.

The feasibility of renovation and expansion of the 2004 structure is dependent on the scope of the renovations to the building It may be feasible to make modifications to the existing structure without requiring full compliance with the current code requirements for new construction.

Several options for classroom expansion were developed as part of this study. In some of the schemes the proposed additions would be designed to be structurally independent of the existing structure; thus, that type of addition would not increase the seismic loads on the existing lateral load resisting system. In some of the other schemes considered as part of the study, the modifications included the addition of a new intermediate floor in a two-story space at the current Media Center space. One of the other options adds a new roof over the existing interior courtyard (the newly enclosed space would then be for the Media Center). In both of these options the new floor and the new roof would increase the demand/capacity ratio of the existing columns and foundations, but not more than the code allowed increase.

Primary Structural Code Issues Related To The Existing Structure

When repairs, renovations, additions or change of occupancy or use are made to an existing structure, a check for compliance with 780 CMR, Chapter 34 *Existing Structures* of the 8th Edition Massachusetts Amendments to the 2009 International Building Code (IBC 2009) and reference code 2009 International Existing Building Code 2009 (IEBC 2009) is required. The intent of the IEBC is to provide alternative approaches to alterations, repairs, additions and/or a change of occupancy or use without requiring full compliance with the code requirements for new construction. Depending on when the project moves forward the codes referenced may be newer versions, which the structural team would coordinate appropriately.

The IEBC provides three compliance methods for the repair, alteration, change of use or additions to an existing structure. Compliance is required with only one of the three compliance alternatives. Once the compliance alternative is selected, the project will have to comply with all requirements of that particular method. The requirements from the three compliance alternatives cannot be applied in combination with each other. The compliance method should be selected once the preferred option has been chosen.

The three compliance methods are as follows:

- 1. Prescriptive Compliance Method
- 2. Work Area Compliance Method
- 3. Performance Compliance Method

Proposed Scheme(s)

Multiple proposed schemes were reviewed as part of this study, details and plans which are found in later sections of this report. The options an internal 2-story re-configuration, a 4-story addition at the southwest corner, the roofed in courtyard, and two different options at the east side of the school, over the Webster Street entry.

Option B: Interior 2-story addition at current Library. Option C: 4-story corner addition at the SW corner. Option D: New roof structure over existing courtyard Option E: New 3 story addition at the Webster St. Entry area (Library + Admin.) Option F: New 3 story addition at the Webster St. Entry area (Classrooms + Admin.)

Comment

The objective is to evaluate the compliance requirements for each of the three methods and select the method that would yield the most cost effective solution for the structural scope of the project. The selection of the compliance method may have to be re-evaluated after the impact of the selected method is understood and after analyzing the compliance requirements of the other disciplines; Architectural, Mechanical, Fire Protection, Electrical and Plumbing.

Prescriptive Compliance Method

In this method, compliance with Chapter 3 of the IEBC is required. As part of the scope of this report, the extent of the compliance requirements identified are limited to the structural requirements of this chapter.

Based on the project scope, the following structural issues have to be addressed:

• All additions shall comply with the code requirements for new construction as prescribed by the IBC.

- For additions that are not structurally independent of an existing structure, the existing structure and its addition, acting as a single structure, shall meet the requirements of the code for new construction for resisting lateral loads, except for the existing lateral load carrying structural elements whose demand-capacity ratio is not increased by more than 10 %, these elements can remain unaltered.
- Any existing gravity, load-carrying structural element for which an addition or its related alterations causes an increase in the design gravity load of more than 5 percent shall be strengthened, supplemented or replaced.

Alterations

- Any existing gravity, load-carrying structural element for which an addition or its related alterations causes an increase in the design gravity load of more than 5% shall be strengthened, supplemented or replaced.
- For alterations that would increase the design lateral loads or cause a structural irregularity or decrease the capacity of any lateral load carrying structural element, the structure of the altered building shall meet the requirements of the code for new construction, except for the existing lateral load carrying structural elements whose demand-capacity ratio is not increased by more than 10%, these elements can remain unaltered.

Work Area Compliance Method

In this method, compliance with Chapter 4 through 12 of the IEBC is required. As part of the scope of this report, the extent of the compliance requirements identified are limited to the structural requirements of these chapters.

In this method, the extent of alterations has to be classified into LEVELS OF WORK based on the scope and extent of the alterations to the existing structure. The LEVEL OF WORK can be classified into LEVEL 1, LEVEL 2 or LEVEL 3 Alterations. In addition, there are requirements that have to be satisfied for additions to the existing structure.

If the work area for a project such as this were to be more than 50% of the aggregate area of the building, the LEVEL OF WORK for this project would be classified as LEVEL 3 Alterations. This would require compliance with provision of Chapter 6, 7 and 8 of the IEBC. If the scope of the project includes new additions to the existing structure; this would trigger compliance with provisions in Chapter 10 of the IEBC.

Level 3 Alterations

- Any existing gravity, load-carrying structural element for which an alteration causes an increase in the design gravity load of more than 5% shall be strengthened, supplemented or replaced. Options 'B' and 'D' entail supporting new, additional structure on existing structural systems.
- For alterations where more than 30% of the total floor area and roof areas of a building or structure have been or proposed to be involved in structural alterations within a 12 month period,

the evaluation and analysis shall demonstrate that the altered building complies with the full design wind loads as per the code requirements for new construction and with reduced IBC level seismic forces.

- For alterations where not more than 30% of the total floor and roof areas of a building are involved in structural alterations within a 12 month period, the evaluation and analysis shall demonstrate that the altered building or structure complies with the loads at the time of the original construction or the most recent substantial alteration (more than 30% of total floor and roof area). If these alterations increase the seismic demand-capacity ratio on any structural element by more than 10%, that particular structural element shall comply with reduced IBC level seismic forces.
- For alterations that involve structural alterations to more than 30% of the total floor and roof area of a building within a 12 month period, the evaluation and analysis shall demonstrate that the altered building structure complies with IBC for wind loading and with reduced IBC level seismic forces.

Additions

- Any addition shall comply with the requirements for the code for new construction as prescribed by the IBC.
- Any existing gravity, load-carrying structural element for which an addition or its related alterations cause an increase in design gravity load of more than 5% shall be strengthened, supplemented or replaced.
- For additions that are not structurally independent of any existing structures, the existing structure and its additions, acting as a single structure, shall meet the requirements of the code for new construction in the IBC for resisting wind loads and IBC Level Seismic Forces (may be lower than loads from the Code for New Construction in the IBC), except for small additions that would not increase the lateral force story shear in any story by more than 10% cumulative. In this case, the existing lateral load resisting system can remain unaltered.

Performance Compliance Method

Following the requirements of this method for the alterations and additions may be onerous on the project because this method requires that the altered existing structure and the additions meet the requirements for the code for new construction in the IBC.

PARTICULAR REQUIREMENTS OF COMPLIANCE METHODS

For the project to meet compliance with one of the two compliance methods "Prescriptive Compliance Method" or the "Work Area Compliance Method", we would have to address the following:

Prescriptive Compliance Method

Additions:

The proposed additions would be designed to be structurally connected to the existing structure; thus, the addition will increase the seismic loads on the existing lateral load resisting system.

If the proposed alterations are such that the alterations increase the design lateral loads on the existing building or cause any structural irregularity of decrease the lateral load carrying capacity of the building, the structure of the altered building shall meet the requirements of the Code for New Construction in the IBC.

If the proposed additions increase the design gravity load on portions of the existing floor or roof members, these members would have to be reinforced and this incidental structural alteration of the existing structure would have to be accounted for in the scope of the alterations to the existing building and would trigger requirements for alterations.

Alterations:

Alterations that would increase the design gravity loads by more than 5% on any structural members would have to be reinforced.

If the proposed alterations of the structure increases the effective seismic weight on the existing structures due to the greater snow loads from the drifted snow against any proposed additions, or, by addition of equipment on the roof, the increase of the effective seismic weight from the drifted snow and the equipment would require that the existing lateral load resisting system comply with the requirements of the code for new construction in the IBC and it would increase the demand-capacity ratio on certain structural elements of the existing lateral load resisting system.

Work Area Compliance Method

If the work area for the proposed renovations for this project were to be more than 50% of the aggregate area of the building, The LEVEL OF WORK for this project would be classified as LEVEL 3 Alterations.

Level 3 Alterations:

If the proposed structural alterations of an existing structure are less than 30% of the total floor and roof areas of the existing structure, we have to demonstrate that the altered structure complies with the loads applicable at the time of the original construction and that the seismic demand-capacity ratio is not increased by more than 10% on any existing structural element. Those structural elements whose seismic demand-capacity ratio is increased by more than 10% shall comply with reduced IBC level seismic forces. The percentage increase in seismic demand-capacity ratio on any particular structural element from the added snowdrift load against a proposed addition would be fairly low, thus, this would not have any major impact on the existing lateral load resisting system, though we

would have to verify that the increase in seismic demand-capacity ratio on any of those particular structural elements is not greater than 10%.

If the proposed structural alterations of an existing structure exceed 30% of the total floor and roof areas of an existing structure, we have to demonstrate that the altered structure complies with the IBC for wind loading and with reduced IBC level seismic forces.

The masonry walls and parapets are required to be anchored to the roof structures.

Additions:

In some of the schemes the proposed additions would be designed to be structurally independent of the existing structure, as in Options C, E, and F; thus, the addition would not increase the seismic loads on the existing lateral load resisting system.

In Options B & D, the proposed work would be the addition of a new floor in a two-story space (Option B) and / or a new roof over the existing interior courtyard. In both of these cases the new addition would increase the demand/capacity ratio of the existing columns and foundations, but not more than the code allowed increase.

Comment:

The compliance requirements of the Prescriptive and Work Area Compliance Methods, in most respects, are very similar. We would recommend the Work Area Compliance Method. Depending on the scope of renovations and additions to the project, it would need to be determined if we have to upgrade the structure to essentially comply with the requirements of the Code for New Construction.

These recommendations can be revisited if the proposed scope of structural renovations differs from our understanding based our discussions; and, then it may be advantageous to follow the requirements of the Prescriptive Compliance Method for the project.

SUMMARY

The existing building structure appears to be in good condition. Based on the preliminary schemes, we understand that the renovations will be limited to minor structural modifications within the existing building, the addition of an intermediate floor and a small seismically separated addition.

Based on this, we recommend that the requirements of the Prescriptive Compliance Method are followed. As the renovations will not overstress any structural element by more than 5% from gravity loads or increase the demand to capacity ratio by more than 10% from seismic loads. No upgrades to the structure will be triggered based on the proposed schemes. Once the proposed scheme is finalized, we can reevaluate the appropriate compliance method and any upgrades to the existing structure that may be required.

HVAC ASSESSEMENT

MECHANICAL / HVAC

HVAC Executive Summary:

Presently, the HVAC Systems serving the building are a chilled water plant, a gas-fired heating hot water plant, roof-mounted air-handling units, indoor-mounted air-handling units, classroom unit ventilators, direct expansion split cooling systems, terminal hot water heating units, roof and inline mounted exhaust fan systems, & de-stratification ceiling fans. In general, the HVAC systems are in fair condition and have been well maintained. The current installations generally comply with code, and are adequately sized to support the existing building layout. All proposed renovation/ addition options will require the installation of additional cooling capacity and HVAC equipment dedicated to serve the newly-added areas, though the heating plant has adequate capacity to serve the additional space.

Many of the currently installed HVAC systems have been updated as part of a building renovation and addition project completed in 2008. Those systems that remain from prior to the 2008 renovations have likely surpassed their expected service life, such as in Gymnasium 'A' – and should be individually inspected for condition and operation (see the section later in this report about costs associated with air handling unit replacement).

Hot Water Heating Plant:

The building hot water heating plant is located in the lower level boiler room and consists of four (4) gas-fired cast iron sectional boilers manufactured by "Burnham" model V1110 (4691 MBH Input, 3739 MBH Output). The boilers are provided with all code-required safety controls and the entire installation appears to be code compliant. Heating hot water is circulated throughout the building within a fiberglass insulated combination copper and schedule 40 steel piping system. Four (4) 1.5 horsepower inline boiler circulator pumps form the primary heating hot water loop where one (1) pump circulates 215 GPM through each boiler whenever that boiler is commanded to operate. These boiler circulator pumps are not equipped with variable frequency drives and are incapable of varying speed to match the boiler staging, resulting in wasted energy. Two (2) pad-mounted 50 horsepower hot water system pumps provide the hot water flow required to meet the building heating load. These system pumps are provided with wall-mounted variable frequency

Boiler Plant

Expansion Tanks

Flue Vent Breeching Chimney

Boiler Control Panel

Combustion Air Inlet

drives for varying the speed of the pumps as the building system hot water control valves open and close. Both system pump bases are provided with spring vibration isolators to mitigate vibration transfer to the building.

Flue gases from each boiler are vented to the outdoors via a double-wall galvanized breeching system that terminates above the roof. This common vent breeching system is shared with the domestic hot water heaters and includes a barometric damper within the boiler room to enhance the stack effect in the vertical chimney. Combustion air is provided to the boiler room via an exterior sidewall louver ducted to a high and low termination point in compliance with the building code, though we recommend confirming the size / capacity of combustion air per current code(s). A motorized damper is installed in this combustion air duct system and interlocked with the boiler plant to open whenever there is a call for heat.

During our site assessment, it was reported that each of the boilers have experienced recurring issues with low-fire conditions and the current gas-supply pressure is suspected of being the culprit (Architects note: The gas pressure was confirmed to be an issue (erratic / fluctuating pressure due to malfunctioning pressure regulator) at a boiler performance test after the date of this assessment. The Town has also expressed that replacement parts for the installed boilers do not fit correctly and make maintenance difficult or impossible. Repair & optimization of the central heating plant is planned for the near future, as is the option of replacing one of the boilers so as to make parts available for the remaining three. Installing a dual-fuel type boiler would allow for extended operation during emergencies should the natural gas supply be interrupted. The properly functioning heating plant will be sufficiently sized to support the renovation/addition project.

Chilled Water Cooling Plant:

There is an air-cooled chiller mounted on a concrete pad adjacent to the boiler room in an outdoor mechanical space. The chiller is manufactured by "McQuay" and has a nominal cooling capacity of 300 Tons. Schedule 40 steel 8" insulated chilled water supply & return piping is routed underground from the chiller to penetrate the floor within the boiler room. Two (2) pad-mounted 40 horsepower chilled water system pumps provide the 44 degree chilled water flow required to meet the building

chilled water cooling load. These system pumps are provided with wall-mounted variable frequency drives for varying the speed of the pumps as the building system chilled water control valves open and close. Both system pump bases are provided with spring vibration isolators to mitigate vibration transfer to the building.

Chilled Water Pumps

Chilled Water Piping

McQuay Air Cooled Chiller

The air-cooled chiller has been non-operational for a number of years, and as part of this study the repair and / or replacement options are being investigated (see specific boiler / chiller report section for details). The currently installed chilled water system is adequately sized for the building HVAC as it is currently, but as noted above does not contain sufficient capacity to take on additional cooling loads that may be brought on by addition / renovation project options. The chilled water system would need to be up-sized – a larger chiller and larger circulating pumps would be required, or the added areas could instead be provided with their own dedicated cooling system. Gymnasiums:

Classroom, Admin, & Media Center HVAC:

In general, all classrooms, administration areas, and the Media Center are provided with tempered ventilation air mixed with re-circulated air by roof-mounted air-handling units with hot water heating coils, chilled water or split DX cooling coils, supply & return fans with VFD's, and vibration isolation curbs; none of the installed air-handling units include energy recovery sections. These air-handling units discharge 55 degree air through a fiberglass-insulated galvanized sheet metal duct system to variable air volume (VAV) boxes with hot water re-heat coils associated with each space. The VAV box damper is modulated in series with the hot water re-heat coil control valve to maintain the associated space temperature set point. As the VAV dampers open and close, the air-handling unit supply and return fan VFD's modulate to increase or reduce fan speed which directly correlates to airflow.

All spaces served by an over-head supply VAV system, with exception to the media center, also contain perimeter fin-tube hot water radiators for supplemental & un-occupied heating. A smaller percentage of classrooms utilize unit ventilators for heating, ventilation, and in some cases, air conditioning. Where these unit ventilators are remaining from prior to the 2008 renovation project have likely exceeded their expected service life. Some of the unit ventilators were outfitted with chilled water cooling coils and some are left with only hot water heating capabilities. All air-handling units existing from prior to the 2008 building renovation project have exceeded their anticipated service lives and should be replaced with new units. All renovation / addition project options would require the added HVAC air-handling capacity and will be designed as needed.

Gymnasiums:

During the 2008 building renovation project, a new Gymnasium – Gymnasium B, was constructed to the west of the original gymnasium, Gymnasium A. This gym is provided with a roof-mounted air-handling unit complete with a hot water heating coil, a filter section, and constant volume supply & return fans. Although this unit is not provided with cooling capabilities, it is in fair condition and is adequate for heating & ventilating the space. Gymnasium A was not renovated as part of the 2008 building renovation project and is in need of HVAC equipment upgrades. Gymnasium A is provided with two (2) roof-mounted air-handling units with hot water heating coils, filters, & constant volume supply & return fans. This equipment has exceeded its anticipated service life and operates at efficiencies significantly lower than that of current technologies, and replacement costs are included in the project budget (see appropriate section of the report for specific information).

Support / Service Spaces mechanical systems:

The Main Electric Room contains an inline exhaust fan ducted to an exterior wall louver and a separate make-up air louver with a motorized damper is installed on the same wall. The make-up air louver is interlocked with the exhaust fan to open whenever the fan is called to operate by the space thermostat.

This system is for cooling of the space and appears to be adequately sized; however, will need to be modified or replaced by an alternative method of cooling if building renovation option 'D were to be selected. This option would occupy the courtyard where the Main Electric Room areaway louvers are currently installed.

The MDF Room is provided with a Ductless Cooling unit to maintain the space temperature below a maximum point driven by the specific requirements of the Data equipment within. The entire MDF cooling installation appeared to be in good condition and adequately sized. The numerous remote IDF rooms did not include any mechanical means of cooling but do have their space

Main Electric Room Cooling Vent Areaway

temperatures monitored by the Building Management System. Should the MDF, Electric, or IDF rooms be expanded under the renovation/ addition project, the current cooling systems and conditions should be reviewed for competence.

Automatic Temperature Controls:

The town of Needham employs ENE Systems for the provisions of all municipal Building Management Systems; this is true for the Needham High School as well. The high school contains a fully-automated direct digital temperature control system for monitoring & controls of all HVAC systems. Each *occupiable* space includes an electronic temperature sensor that is monitored for HVAC system optimization & alarming

MDF Room Ductless Cooling Unit

conditions. The programming & sequencing of all HVAC building operations are viewable & changeable from a front-end computer work-station. The building management system (BMS) contains a Tridium Niagara platform with BACnet IP & MSTP communication for open protocol& integration of all systems. The BMS currently installed utilizes current technologies and has the capacity to support a renovation/ addition project.

ELECTRICAL / TELCOM ASSESSEMENT

ELECTRICAL & TELCOM

Executive Summary:

In general, the electrical systems are in fair condition, comply with code and are adequately sized to support the renovation/classroom addition options presented.

The electrical systems have been updated as part of a building renovation and addition project completed in 2008.

Electrical Distribution System:

The building is fed from a utility company owned exterior pad mounted transformer with primary and secondary service feeders installed below grade. Due to the service size and limited number of conductors that can be installed on the secondary spades of the utility company transformer an Elliot box is installed so that 12 sets of 4# 500kcm could be installed to serve the buildings 5000 ampere rated 277/480V, 3 phase service. The utility company meter is located within the main electric room, C.T.s are installed in a C.T. section of the main switchboard. There are (4) distribution panels fed from the main switchboard that then feed branch circuit panelboards. There is adequate capacity in the existing distribution system both with respect to space and electrical capacity for a renovation/addition project.

Main switchboard

Utility Meter

Main Breaker

Distribution Panel

Utility Padmount Transformer

Eliot Box

Branch Circuit Wiring Devices:

The quantity and location of branch circuit devices seems adequate. Wiring is either in conduit concealed or metal clad cable where concealed and not subject to physical damage. Branch circuit panelboards are of circuit breaker type in good condition and have adequate future capacity.

Emergency Power System:

The emergency power system consists of a 277/480V, 3 phase 750 kw diesel fired generator installed within a weatherproof sound attenuated enclosure. The generator is manufactured by Caterpillar. The generator severs both life safety loads and optional standby loads. The emergency system is code compliant. A 1600 amp 4 pole automatic transfer switch serves a 1600 amp emergency distribution panel "OEDP". There seems to be adequate capacity and space to provide both optional standby and life safety loads for a renovation/addition program.

225A Life Safety Transfer Switch

Life Safety Panel ELP Directory

1600 amp transfer switch

Generator

Interior Lighting:

Interior lighting in general is in good condition and is mainly of the fluorescent type. The building contains an automated lighting control system manufactured by Douglas Lighting Control. There is adequate capacity for expansion of the existing lighting control system.

Douglas Relay Panel

<u>Fire Alarm System:</u>

The fire alarm system is an addressable Edwards EST 3 system with voice evacuation. The system is code compliant and has the capacity for expansion. The method of transmission is via a digitize radio box.

Digitize Box

Data/Telephone/Classroom Intercom/Clock System:

The data backbone consists of both single mode and multi-mode cables from the MDF room to eleven IDF rooms. The multi-mode fiber is 10 gig laser optimized.

The data wiring is CAT6 throughout the building providing 1 gig to the desktop. The tel/data infrastructure is in good condition. We did note that an IDF room on the first floor nearest the main electric room did not have dedicated cooling and may not have had adequate exhaust as the room was over heating and had plug in fans to help cool some of the equipment. This should be addressed.

The telephone system is not a VOIP system. It is a Samsung PBX which is a district wide system. The system utilizes centrex lines for inter building communication which can be more costly than an VOIP system.

The classroom intercom is a Rauland telecenter and is in good condition. The Rauland system can be expanded to serve a renovation/addition project.

The clock system is a sapling system and is operational.

MDF Fiber Distribution

IDF

Fan to Keep IDF Cool

Samsung Phone

Paging System

Sapling Clock System

Security:

The school is equipped with an access control system, CCTV system and an intrusion system.

The access control system is split up into three sub-systems of different manufacturers making the system difficult to manage based on conversations with the owner. The CCTV system is antiquated as well. The existing access control and CCTV system will be upgraded to match the system that ultimately gets selected and installed at the new Needham Hillside project. Any renovation/addition should connect to this upgraded system.

The intrusion system is in good condition and can be extended to serve the renovation/addition.

PLUMBING ASSESSEMENT

PLUMBING

Executive Summary:

Presently, the Plumbing Systems serving the building are cold water, hot water, sanitary, waste and vent system, special waste and vent system, storm drain system, and natural gas. Municipal sewer and municipal water service the Building.

The plumbing systems have been updated as part of building renovation and addition project completed in 2008. The plumbing systems appear to be well maintained. It would appear all systems have the capacity to support a building renovation and/or addition project.

The plumbing fixtures are in good condition. Plumbing fixtures appear to meet code in terms of water conservation and accessibility. The code does not require these fixtures to be upgraded, but where new fixtures are installed, as may be required by other codes or concerns, the new fixtures need to be accessible and water conserving type.

Cast iron is used for sanitary and storm drainage. Rainwater from flat roof areas is collected by interior rain leaders which appear to discharge to a below grade drainage system. Where visible, the cast iron pipe appears to be in good condition. Smaller drainage pipe sizes appear to be copper tubing. In general, the drainage piping can be reused where adequately sized for the intended new use.

<u>Fixtures</u>:

The water closets are predominately wall hung vitreous china with flush valves.

Urinals are wall hung vitreous china with flush valves.

Lavatories are wall hung vitreous china with metering faucets.

Electric water coolers are generally wall hung, hi-lo units. Unit outside of the Gymnasium is a single drinking fountain with a bottle filling station.

Electric Water Cooler Outside of Gym Space

Water Systems:

The main domestic water service is located in the basement Mechanical Room. The service is 4-inch in size and includes a 2-inch water meter. The service is protected with two 4-inch reduced pressure backflow preventers located in a parallel configuration.

The main domestic cold-water distribution is 4-inch in size. Piping is copper tubing with sweat joints. Piping and shutoff valves are in good condition.

Domestic hot water is generated through two gas-fired water heaters. Domestic water heater #1 was installed in 2014. Domestic water heater #2 appears to be original to the renovation project of 2008.

Domestic water heater #1 is a high efficiency, tank type water heater. Water heater #1 has a natural gas input of 500,000 BTUH and a storage volume of 120 gallons. Water heater is vented to the exterior through the side wall of the Mechanical Room. Vent pipe material is schedule 40 PVC pipe, which is an acceptable material for this type of appliance.

Domestic water heater #2 is a standard efficiency, conventional fire-tube water heater. Water heater has a natural gas input of 700,000 BTUH and a storage volume of 425 gallons. Date of manufacturing is December 2005. The water heater is vented with double stainless steel vent piping which connects to the same breeching system as the four existing boilers.

The hot water system includes a thermostatic mixing valve which appears to be in good condition.

HVAC boiler water make-up system is protected with a reduced pressure backflow preventer.

Domestic Water Service & Meter

Water Service Reduced Pressure Backflow Preventers

Domestic Water Heater #1

Domestic Water Heater #2

Gas:

Natural gas is provided to the building. Gas serves the heating boilers, domestic water heaters, kitchen cooking equipment, and Science classrooms. The gas meter is located on the exterior of the building, outside of the Mechanical Room.

Gas piping is black steel with a combination of screwed and welded joints and fittings depending on the pipe size. Piping appears to be in good condition.

Exterior Gas Meter

Drainage Systems:

Cast iron is used for sanitary and storm drainage. Where visible, the cast iron pipe appears to be in good condition. Smaller pipe sizes appear to be copper.

In general, the cast iron drainage piping can be reused even in a major renovation where adequately sized for the intended new use.

FIRE PROTECTION ASSESSEMENT

FIRE PROTECTION

Executive Summary

The Needham High School Building, is protected by combined automatic sprinkler/standpipe system. The school underwent a full renovation and addition project which was completed in 2008. At that time the combined sprinkler/standpipe system was installed. The building appears to be fully sprinklered with the exception of electric rooms. The system is in good condition and has the capacity to be expanded to protect future building additions.

Existing Conditions:

The School building is served by a dedicated 8-inch fire water service. The service includes an 8-inch double check valve assembly and wet alarm valve. The fire distribution main to the building is 8-inch in size.

The system is a combined standpipe/sprinkler system. Standpipe risers with fire department valves are located in the stairwells. There are multiple sprinkler zones per floor. Each sprinkler zone control valve assembly includes supervised shutoff valve, check valve, flow switch, and inspector's test station.

System fire department connection is a 4-inch Storz connection.

In non-ceiling areas, sprinkler heads are typically upright brass heads. Where ceilings are provided, sprinklers are either fully concealed type or pendent type. Sprinklers are quick response type.

Piping is black steel with either grooved coupling joints or threaded joints depending on pipe sizes. Piping, where exposed, is in good condition.

All spaces within the building appear to be protected except for the electric rooms.

The existing gym area is fed by a dedicated 4" sprinkler main supplied from the corridor. Gymnasium sprinkler heads are semi-recessed type located in ceiling tiles.

System appears to be well maintained with required periodic inspections/testing performed by Owner. The existing system appears to have the capacity to be modified should renovations and/or additions occur at the building.

Building Fire Service Entrance

Typical Sprinkler Control Valve Assembly

Typical Fire Department Valve Cabinet at Standpipes

Gym Sprinkler Supply Main

Gym Ceiling Sprinklers

ENROLLMENT FORECAST

Overview

In December of 2016, McKibben Demographics produced an enrollment forecast through the 2031-2032 school year for Needham Public Schools. Their study included forecasts by major grade groupings and for each elementary school catchment area (included in Appendix Item K-4). McKibben's methodology differs slightly from other projections produced by the District in the past. It not only took into account the cohort survival ratios of students year to year, but also accounted for localized changes in the residential construction market, the demographic profiles of residents in each elementary catchment area, and the current economic conditions that may impact housing stock turnover. It was a more Needham-specific and nuanced methodology than had been provided by others previously.

Every forecast contains uncertainty. In general terms, the further into the future a forecast is, the greater the uncertainty. Significant changes in the residential interest rates or other market forces impact certainty for enrollment forecasts. For high school projections, however, there tends to be greater certainty because the majority of the students, even in a fifteen year forecast, are already attending school in the District. Given these considerations, McKibben Demographics' forecasts are typically within 2% of actual realized enrollment.

Enrollment Target

McKibben's forecast concluded that the District overall will experience a growth, peak, then decline trajectory over the next fifteen years. It concluded that Needham High School will experience continued growth for the 2017-18 school year through the year 2024-2025, peaking at 1,835 for grades 9th-12th. In the latter half of the forecast, McKibben concludes that the Needham High School enrollment will begin a slow decline to 1,749 students in the 2031-2032 school year – 90 students higher than the enrollment for 2016-17 and 300 hundred higher than the original design enrollment. The chart below depicts both the historic and projected enrollment trajectories.

D&W collaborated with members of the Working Group, the Permanent Public Building Committee and the School Committee to interpret McKibben's findings and to identify an enrollment planning target of 1800 9th-12th grade students, which represents all general education, special education, and ungraded students (older than 18 who still receive services in the District). In choosing an enrollment target, the Working Group and the Permanent Public Building Committee wanted to be both conservative and reasonable. There was a desire to choose a high

enough target that any project executed would serve the needs of Needham High School students well into the future, but not so high as to be overly conservative. Dore & Whittier used this enrollment target to determine how many students may be enrolled in each course in the future and as a key input for calculating space needs across Needham High School.
SPACE NEEDS ANALYSIS

Overview

To determine if space needs exist or will exist at Needham High School, D&W performed a detailed analysis of every instructional space and of every section of each course offered. The analysis included documentation of existing space usage, numbers of students enrolled in each course, and the utilization of each instructional space. In general terms, this analysis allowed D&W to fully understand the complexities of Needham High School's daily schedule, its class size practices, and the nuances that make Needham High School unique among its peer schools. D&W's analysis also revealed that enough complexity and nuance exists to render typical laws of averages and rules of thumb incapable of accurately determining needs. The narratives, tables, charts, and illustrations that follow document D&W's analysis that formed the basis for our conclusions. In short, our findings suggest that Needham High needs:

- (6) General Education Classrooms @ 925 NSF¹ each
- (2) General Education Classrooms @ 1200 NSF each divisible into (4) spaces @ 600 NSF each
- General-purpose Science Lab @ 1440 NSF
- Science Prep Room @ 200 NSF
- Approximately 5,500 NSF of Special Education Instructional and Administrative Space

Existing Space Usage

Needham High School administrators provided Dore & Whittier with raw data about each section of each course offered. The data was comprehensive and included the following critical information:

- Course & Section Titles
- Room Number and Geographic Location within the Building
- Number of Students Enrolled
- Maximum Number of Students Permitted to Enroll
- Time of Day Course Meets

No personal student information was included in any of the data provided. In addition to the course and section information, administrators provided information about the school's daily schedule. In general terms, each school day consists of five instructional blocks, but each cycle (which spans more than one day) is seven instructional blocks in length. This means that not every course meets every day, but meets once per seven-block cycle on a rotating basis. It takes seven school days for the rotation to return to its starting position (where 1st period falls in the first block of the day). To add nuance, Needham High Schools' schedule also includes a unique schedule on Fridays. All of this complexity makes it difficult to rely on rules of thumb or laws of averages when forming calculations. The table on the following page summarizes the High School Schedule.

¹ NSF: Net Square footage. Net Square footage refers to the usable floor area of an instructional space. It is defined as the area bounded by the interior faces of a room's walls.

	1 st Block	2 nd Block	3 rd Block	4 th Block	5 th Block
A-Day: Monday	1 st Period	2 nd Period	3 rd Period	4 th Period	5 th Period
B-Day: Tuesday	6 th Period	l 7 th Period	1 st Period	2 nd Period	3 rd Period
C-Day: Wednesday	4 th Period	l 5 th Period	6 th Period	7 th Period	1 st Period
D-Day: Thursday	2 nd Period	d 3 rd Period	4 th Period	5 th Period	6 th Period
E-Day: Friday	7 th Period	l 1 st Period	2 nd Period	3 rd Period	4 th Period
F-Day: Monday	5 th Period	l 6 th Period	7 th Period	1 st Period	2 nd Period
G-Day: Tuesday	3 rd Period	l 4 th Period	5 th Period	6 th Period	7 th Period

Dore & Whittier performed a number of analyses on the data. The assumptions, methodology and algorithms used to perform each analysis are defined below.

Teaching Station

A Teaching Station is any space where a student receives instruction and that appears on a student's schedule with the exception of those serving Special Education programs and services.² Study/Seminar courses and Directed Study courses fall outside this definition as well because students are not receiving instruction. A few other exceptions exist as a result of the nature of a course and number of students enrolled. These specific courses were excluded from the teaching station calculations:

- ELL Advanced English This is not considered a Special Education course, but functions in a similar manner. Student enrollment in, and space utilization for, this course is low.
- ELL Support This is not considered a Special Education course, but functions in a similar manner. Student enrollment in, and space utilization for, this course is low.
- Individual Study English 2 Independent study courses can typically occur anywhere, including off campus. Including this course in the teaching station calculations would inappropriately lower outcomes.

Existing Average Students Per Classroom

A generalized representation of how many students are typically occupying a space during any one period at any given time. It is a term that can be used synonymously with Average Students Per Period or Average Students Per Section. This calculation can be applied to both general education and special education spaces.

Total sum of students occupying a space over a complete cycle ÷ Total number of occupied periods in a cycle

² Planning strategies for American High Schools typically size a building assuming all students will be served in the general education setting. This translates into classroom and other teaching station counts capable of housing the entire student population within general education settings. Any spaces dedicated to Special Education programs and services would be over and above teaching station counts.

Existing Average Utilization Per Classroom by Periods

A representation of how frequently instructional spaces are occupied by students as a percentage of the total periods available within the school schedule. This calculation is most often applied to general education instructional spaces only, but can be applied to special education spaces if they are regularly scheduled and appear on students' schedules. It is a calculation that can not be used for Special education spaces where students receive services on an as needed or in an ad hoc manner as in a pull out model because either no data exists or it varies so greatly to make the calculation meaningless.

Total count of periods occupied by students over a complete cycle ÷ Total number of periods in a cycle (35)

Existing Average Utilization Per Classroom by Minutes

A representation of how frequently instructional spaces are occupied by students as a percentage of the total minutes available within the school schedule. This calculation is applied and limited in exactly the same way as Average Utilization by Periods.

Total sum of minutes occupied by students over a complete rotation ÷ Total number of minutes in a rotation (2480)

Existing Average Students Per Department

A generalized representation of how many students are typically occupying a space during any one period at any given time calculated for a Disciplinary Department.

Total sum of students occupying all spaces for a single Department over a complete cycle ÷ Total number of occupied periods in a cycle

Existing Average Utilization Per Department by Periods

A representation of how frequently instructional spaces for a single Disciplinary Department are occupied by students as a percentage of the total periods available within the school schedule.

Total count of periods occupied by students in a single Department over a complete cycle ÷ Total number of periods available in that Department in a cycle

Existing Average Students for Needham High School

A generalized representation of how many students are typically occupying any general education³ instructional space during any one period at any given time calculated for the entire Needham High School.

Total sum of students occupying all general instructional spaces for the entire school over a complete cycle ÷ Total number of occupied periods in a cycle

³ Special education courses, services, and programs tend to have lower students per period than general education courses by design and regulation. Including special education in this calculation would artificially lower the averages for the entire building and result in a misrepresentation of any outcomes.

Existing Average Utilization for Needham High School by Periods

A representation of how frequently general education instructional spaces² are occupied by students as a percentage of the total periods available within the school schedule.

Total count of periods occupied by students for the entire school over a complete cycle ÷ Total number of periods available in a cycle

In addition to these definitions and algorithms, it is important to note that several other factors contributed to the determination of needs.

Section Caps

Needham High School has adopted the educational practice of capping courses based on the best interests of students. For many general education courses, the cap has been set as low as 16 students per section. Such practices result in lower than what otherwise might be anticipated averages and is evidence of why relying on rules of thumb may misrepresent actual needs.

Usage of Health & PE Instructional Spaces

Needham High School has several spaces serving its Health & Physical Education curriculum. D&W observed as many as nine spaces being used for this Department. However, students are only scheduled into one of the two gyms as an administrative practice. The remainder of the spaces are occupied based on the nature of the activities planned for the day and coordinated internally amongst the faculty of the department. While this practice appears to be working well, it makes it impossible to accurately calculate space usage for this area of the building. Dore & Whittier examined the total number of students enrolled in these courses, the size of the two gym spaces, and developed an estimated equivalent of 6 instructional spaces. We used that estimate to calculate the average number of students per period and per department. Otherwise, the high enrollments as scheduled would have resulted in a misrepresentation of the averages for the entire high school. We did, however, report that the two gym spaces were utilized 100 percent of the cycle as documented in the data provided.

General Education Room Size

Needham completed a major renovation/addition to Needham High School in 2007. At the time, guidelines for room size were significantly smaller than MSBA's guidelines are for the same spaces today.⁴ D&W observed that many of the spaces serving the Core Academic disciplines are at or near 725 NSF in size but house 28 students. The following calculations and graphics attempt to put those numbers in context.

Current MSBA Guideline for General Education Classrooms

- Assumes 23 Students Per Period
- 825 NSF to 925 NSF
- 877 NSF ÷ 23 Students Per Period = 37.5 NSF per Student

Existing Needham High School General Education Classrooms

- Average Students Per Period = 20.88
- 725 NSF
- 725 NSF ÷ 37.5 NSF per Student = 19.33
- 147 Sections (45%) have more than 23 students

The illustrations below compare and contrast Needham High School's existing General Education Classrooms with those within MSBA's current guideline. They are meant to demonstrate that even without casework or a teacher desk, whether with individual student desks or two-student tables, 725 NSF classrooms are crowded at 24 students. With 28 students, 725 NSF classrooms limit teachers' ability to implement certain instructional activities, particularly those that require student regroupings or movement.

⁴ 725 NSF was a typical Classroom size in 2007. MSBA's guideline for a typical classroom is 850 NSF to 925 NSF, the midpoint of which is 887 NSF.

The tables on the following pages contain both the raw data analyzed and D&W's calculations.

				Judden			otinzatio		515	Revised .2.09.17
	Day			А				В		
	Period	1	2	3	4	5	6	7	Total Minutes Per	
	Minutes, Monday - Thursday	90	90	80	50	50	90	90	2480	
	Minutes, Friday		E	Existing Nun	nber of Stud	lents Enrolle	d			
								~~	Auguana Studenta	
Room #	Course Title	<16		16 t	0 22		2	23	Average Students Per Period	Rate by Periods
701	General Classroom - English*	20	27	25	20	18	25	12	21.00	100.00%
702	General Classroom - English	27	20	28	23	23	26	21	24.00	100.00%
715	General Classroom - English	11	21	27	20	23	25	0	21.17	85.71%
717	General Classroom - English	21	22	25	10	0	23	23	20.67	85.71%
719	General Classroom - English	26	25	26	27	0	12	18	22.33	85.71%
720	General Classroom - English	19	20	15	28	18	25	25	21.43	100.00%
721	General Classroom - English	19	28	25	25	21	17	25	22.86	100.00%
722	General Classroom - English	23	19	29	20	15	27	24	22.43	100.00%
723	General Classroom - English	20	0	19	27	20	21	27	22.33	85.71%
724	General Classroom - English	22	25	25	27	13	28	28	24.00	100.00%
726	General Classroom - English	20	22	23	25	27	19	22	22.57	100.00%
728	Interdisciplanary Room*	28	28	31	24	28	30	0	28.17	85.71%
730	General Classroom - English	22	21	25	12	23	30	28	23.00	100.00%
732	General Classroom - English	12	8	29	20	25	26	21	20.14	100.00%
E	English Department Sub-tota	ls							22.56	94.90%
109	General Classroom - Math	21	23	23	15	22	0	24	21.33	85.71%
112	General Classroom - Math	24	17	0	21	23	24	0	21.80	71.43%
201	General Classroom - Math	25	24	23	25	23	16	20	22.29	100.00%
202	General Classroom - Math	23	17	11	23	17	18	23	18.86	100.00%
203	General Classroom - Math	19	20	23	18	19	0	17	19.33	85.71%
204	General Classroom - Math	0	17	17	24	24	17	23	20.33	85.71%
206	General Classroom - Math	21	19	22	17	24	24	15	20.29	100.00%
211	General Classroom - Math*	25	22	23	14	13	14	25	19.43	100.00%
212	General Classroom - Math	19	23	25	19	26	24	0	22.67	85.71%
214	General Classroom - Math	25	27	25	24	24	25	21	24.43	100.00%
216	General Classroom - Math	23	18	16	26	15	23	23	20.57	100.00%
221	General Classroom - Math	21	9	14	16	20	19	20	17.00	100.00%
223	General Classroom - Math	12	22	21	14	25	21	13	18.29	100.00%
	Math Department Sub-totals	5							20.46	93.41%
401	General Classroom - Social Studies	0	18	23	14	27	24	21	21.17	85.71%
402	General Classroom - Social Studies	24	24	0	24	23	24	21	23.33	85.71%
404	General Classroom - Social Studies	22	26	24	13	0	19	22	21.00	85.71%
406	General Classroom - Social Studies	15	24	21	24	19	21	24	21.14	100.00%
418	General Classroom - Social Studies	15	21	22	18	23	11	24	19.14	100.00%
421	General Classroom - Social Studies	20	24	0	18	23	19	0	20.80	71.43%
423	General Classroom - Social Studies	24	0	21	24	21	14	23	21.17	85.71%
424	General Classroom - Social Studies	23	24	26	24	22	21	25	23.57	100.00%
425	General Classroom - Social Studies	11	23	20	17	16	10	0	16.17	85.71%
426	General Classroom - Social Studies	23	13	0	8	16	_23	24	17.83	85.71%
427	General Classroom - Social Studies	15	21	22	13	20	10	20	17.29	100.00%
428	General Classroom - Social Studies	20	18	0	11	18	22	21	18.33	85.71%
429	General Classroom - Social Studies	24	24	0	23	24	24	22	23.50	85.71%
										-

Social Studies* **Social Studies Department Sub-totals**

20.43

84.69%

414	General Classroom - French	11	0	22	16	18	0	21	17.60	71.43%
415	General Classroom - Latin	25	18	26	27	24	23	20	23.29	100.00%
416	General Classroom - French	17	14	21	21	14	16	0	17.17	85.71%
417	General Classroom - Latin	22	20	27	16	18	0	22	20.83	85.71%
419	General Classroom - Chinese	12	0	24	11	16	0	25	17.60	71.43%
707	General Classroom - Spanish	15	19	0	14	18	14	0	16.00	71.43%
709	General Classroom - Spanish	20	26	0	24	24	0	22	23.20	71.43%
711	General Classroom - Spanish	19	20	18	20	16	20	24	19.57	100.00%
712	General Classroom - Spanish	16	19	21	11	23	16	0	17.67	85.71%
713	General Classroom - Spanish	25	13	0	23	21	24	24	21.67	85.71%
714	General Classroom - Spanish	0	25	19	25	13	24	26	22.00	85.71%
716	General Classroom - Spanish	10	18	0	24	13	30	14	18.17	85.71%
World	Languages Department Sub	19.67	83.33%							
Со	ore Academic Sub-tot	20.88	89.22 %							

	Day			А				В		
	Period	1	2	3	Δ	5	6	7	Total Minutes Per	
	Minutes, Monday - Thursday	9 0	9 0	80	- 50	50	90	90	Cycle 2480	
	Minutes, Friday		E	Existing Nun	nber of Stud	ents Enrolle	d			
									Average Studente	
Room #	Course Title	<16		16 t	0 22		2.	23	Per Period	Rate by Periods
101	Engineering Lab	9	2	0	0	24	24	24	16.60	71.43%
102	Physics Lab	21	18	22	19	24	17	17	19.71	100.00%
103	Physics Lab	18	18	23	0	21	23	16	19.83	85.71%
104	Physics Lab	18	15	22	19	21	12	16	17.57	100.00%
106	Physics Lab*	19	24	12	19	18	18	0	18.33	85.71%
108	Physics/Bio Lab	22	19	11	15	17	17	17	16.86	100.00%
110	Biology Lab	23	18	23	0	24	24	20	22.00	85.71%
207	Chemistry Lab	18	20	21	22	20	23	22	20.86	100.00%
208	Chemistry Lab	11	20	16	22	0	17	17	17.17	85.71%
209	Chemistry Lab	15	21	19	18	19	20	23	19.29	100.00%
210	Chemistry Lab	15	0	16	23	22	24	12	18.67	85.71%
213	Biology Lab	0	23	23	13	0	22	22	20.60	71.43%
215	Biology Lab	14	0	12	14	19	24	16	16.50	85.71%
217	Biology Lab	0	24	24	14	16	21	18	19.50	85.71%
219	Biology Lab	16	20	22	23	0	20	17	19.67	85.71%
	Science Departmer	nt Sub	-tota	ls					18.88	88.57%
601	Art	20	20	20	0	18	20	0	19.60	71.43%
605	Art	4	0	5	19	20	0	20	13.60	71.43%
807	Art - Ceramics	21	21	22	0	15	21	22	20.33	85.71%
809	Art - Photogrpahy	16	0	14	11	16	20	19	16.00	85.71%
901	Art	16	0	7	15	23	0	24	17.00	/1.43%
903	Art	0	24	24	0	24	22	0	23.50	57.14%
907	Art	0	11	21	19	0	15	23	17.80	71.43%
909		10	0	15	19	U	19	14	10.20	71.43%
Fir	he Arts Department Sub-tot	als							17.88	/3.21%
612	Chorus Room	36	30	0	19	0	0	28	28.25	57.14%
614	Midi Lab	0	16	0	10	0	0	0	13.00	28.57%
616	Band Room	0	0	0	15	42	0	0	28.50	28.57%
Auditorium	Auditorium - Excluded	0	7	19	0	0	0	0	13.00	28.57%
Perfor	ming Arts Department Sub	-totals							24.50	42.86%
409	Multi-media Lab	0	11	0	0	1	1	1	3.50	57.14%
409a	TV Studio	8	15	15	0	0	0	0	12.67	42.86%
	Fine & Performing	Arts S	Sub-ta	otals					17.51	61.54%
611	Gym - B	76	53	78	78	51	61	48	21.19	100.00%
613	Gym - A	54	52	78	26	61	47	75	18.71	100.00%
	Health & PE Depar	tment	t Sub-	total	S				19.95	100.00%

GRAND TOTALS

19.92 84.03%

205F	3	8	0	0	0	0	0	5.50	28.57%
411	11	8	0	5	5	5	5	6.50	85.71%
706	22	11	13	24	12	13	24	17.00	100.00%
707A	0	2	0	0	2	2	6	3.00	57.14%
708	3	12	6	9	7	3	5	6.43	100.00%
710	5	6	0	6	6	0	2	5.00	71.43%
802	2	4	0	3	3	8	5	4.17	85.71%
803	4	7	0	2	4	6	0	4.60	71.43%
805	3	6	3	0	3	4	0	3.80	71.43%
808	3	4	4	4	4	4	4	3.86	100.00%
810	5	4	0	5	4	0	6	4.80	71.43%
902	5	12	5	0	9	8	3	7.00	85.71%
910	6.71	100.00%							
Special Education	6.36	79.12%							

The bulleted list below summarizes the key findings from this analysis of existing space use.

• The existing building houses 88 total teaching stations, including spaces that have been recently repurposed to be general education classrooms.

Department	Total Teaching Stations
Core Academic	E 2
(English, Mathematics, Social Studies, World Languages)	52
Science	14
Fine Arts	8
Performing Arts	3
Health & Physical Education	6
Vocational & Technology ⁵	2
Other ⁶	3
GRAND TOTALS	88

- General education spaces are averaging 19.92⁷ students per period for all of Needham High School
- General education spaces are averaging 84%⁸ utilization for all of Needham High School
- Individual Departments Averages:

	Average Students Per	Utilization by
	Period	Department
English Department	22.56	94.90%
Math Department	20.46	93.41%
Social Studies Department	20.43	84.69%
World Languages Department	19.67	83.33%
Science Department	18.88	88.57%
Fine Arts Department	17.88	73.21%
Performing Arts Department	24.50	42.86%
Health & PE Department	19.95	100% ⁹
Multi-Media Lab ¹⁰	3.5	57.14%
TV Studio ⁷	12.67	42.86%
Special Education Department ¹¹	6.36	79.12%

⁵ Television Studio and Fabrication Lab

⁶ Auditorium, Multi-media Lab, and Interdisciplinary Classroom

⁷ MSBA guideline for students per period is 23 for grades 9th-12th

⁸ MSBA guideline for utilization is 85%. 85% is also a common benchmark across the country. It represents students occupying spaces 6 of seven periods per cycle.

⁹ This is a misrepresentation of what is believed to be really happening across the entire department. 100%, in this context, only represents the fact that the two Gym spaces are scheduled 100% according to student schedules. In practice, these students are distributed amongst as many as nine spaces.

¹⁰ These two spaces are unique. They are scheduled under the Performing Arts Department, but are highly specialized spaces with very few students scheduled into them. They are contributing to lower averages across the HS.

¹¹ Special Education spaces were excluded from overall building averages. Including special education in these calculations would artificially lower the averages for the entire building and result in a misrepresentation of the outcomes.

- Over-crowding and over-utilization in the Core Academic disciplines appears to be offset by under-crowding and under-utilization in the Fine & Performing arts departments.
- There are currently 329 sections offered in English, Mathematics, Social Studies, and World Languages. At the benchmark of 85% utilization, these sections require 55 general education classrooms. Needham High School currently possesses only 52. This demonstrates that a current need exists for 3 general education classrooms based on the 2016-2017 enrollment.
- At the 85% utilization and 23 students per classroom benchmarks, Science requires 15 Science Labs. Needham High School currently possesses 14. This demonstrates that a current need exists for 1 multi-discipline Science Lab based on the 2016-2017 enrollment.

Future Space Usage

In order to determine if spatial needs will exist at Needham High School in the future, D&W combined the agreed upon target enrollment with several assumptions and several algorithms to project how many students would be enrolled in each section. Those assumptions and algorithms are defined below.

The current number and type of courses offered will continue for the foreseeable future.

While the number and type of courses will likely change over the next 15 years of the school's lifecycle, it is impossible to know what those changes will be. For purposes of determining future space needs, D&W assumed the program of studies would continue.

The current daily schedule will continue for the foreseeable future.

Needham High School and District Administrators are currently studying revisions to the high school's daily schedule. All explorations are based on a seven period/cycle model. D&W assumed a seven period/cycle schedule in all its algorithms.

The current desirability of courses will continue into the foreseeable future.

D&W assumed that the same percentage of students currently enrolled in courses will continue for the foreseeable future.

Section caps should be adjusted downward.

Given the size of existing instructional spaces, a desire was expressed by members of the Working Group to reduce class sizes, particularly in the Core Academic Disciplines, to a maximum of 24 students per section. Class sizes and section caps that already exist to be in the best interest of students should, however, remain intact.

Utilization rates should be maintained or improved.

As the enrollment increases and places stresses on the existing building, a desire was expressed by the Working Group to maintain the status quo or reduce the utilization rates of instructional spaces. An overall rate of 85% or lower should be maintained for the entire Needham High School. To achieve that, however, utilization rates in the Core Academic disciplines should be no higher than they are currently. D&W incorporated these desires into its algorithms.

Inherent Inefficiencies of Certain Instructional Spaces

Certain courses require specialty spaces, spaces with inherent inefficiencies in utilization. The Auditorium is an example. A theatrical arts course that takes place in the Auditorium may have acting, stagecraft, lighting, direction, and/or writing as part of the curriculum. It is unlikely, however, that such a course will have enough students enrolled to be fully utilized as an instructional space every period of every day. Its real value is as a performance venue outside the typical school day. Even in a space like the Chorus Room, there are typically not enough students enrolled to be fully utilized. But, it would be inappropriate to offer these courses in spaces not specifically designed for the needed functions in an effort to improve utilization. It would also be difficult, if not inappropriate, to offer other courses in these specially designed spaces. Housing a World Languages course in the Auditorium might be theoretically possible, but the fixed furnishings alone would greatly limit the types of instructional activities a teacher could employ. D&W assumed these inherent inefficiencies are permissible and overcoming them as part of future solutions was not educationally viable in most circumstances.

Total Students Enrolled

A representation of the total number of students currently enrolled in a course for the 2026-1027 school year.

Total sum of students enrolled in all sections of a course over a complete cycle

Section Enrollment Cap

A generalized representation of the maximum number of students allowed to enroll in a course. It is a number determined by Departmental and School leadership to ensure the class sizes are in the best interests of students. In determining future space needs, these caps remained in effect when they were below 23. When existing caps exceeded 23, future space needs were determined based on a maximum cap of 24.

Actual Number of Sections

A representation of how many sections of a course were offered in the 2016-2017 school year. These numbers were determined by Departmental leadership based on expected course enrollments and then revised once actual enrollments were known. In many cases, more sections than necessary were offered in order to provide access to students who would otherwise have scheduling conflicts from other disciplines.

Percentage of Total Population

A representation of how many students, as a percentage of the total 2016-2017 9th-12th population, were enrolled in a course.

Total students enrolled ÷ Total current enrollment (1,659)

Theoretical Students Enrolled

A theoretical representation of how many students will be enrolled in a course when the total 9th-12th population reaches the target enrollment of 1800 students.

Enrollment target (1,800) X Percentage of population of total population currently enrolled in course

Theoretical Sections Needed in the Future, Decimal

A two-decimal place representation of how many sections of a course are needed in the future. For courses with a cap of 23 or less, the existing cap was used in the calculation. For courses with a cap of 24 or higher, a maximum cap of 24 was used in the calculation.

Theoretical students enrolled over a complete cycle ÷ Section Cap

Theoretical Sections Needed in the Future, Rounded

A rounded representation of how many sections of a course are needed in the future. In an effort to be conservative and ensure that sections can be scheduled, the decimal calculation for Theoretical Sections Needed was rounded up to the next whole section.

Theoretical Space Needed in the Future, Individual Course

A representation of how many rooms are needed for a course in the future. Since all future daily schedules are assumed to be based on a seven periods/cycle model, each room is capable of housing 35 sections at 100% utilization. For this calculation, D&W applied an 85% utilization.

Theoretical sections needed, rounded ÷ 7 sections per cycle ÷ 85% utilization

Theoretical Space Needed in the Future, Departmental Sub-Total

A representation of how many rooms are needed for an entire department in the future. This calculation will result in a need for single rooms to serve multiple courses in many cases.

Total sum of theoretical spaces needed for an entire department, rounded up to the nearest whole room

In addition to these definitions and algorithms, D&W employed two other tools to help determine if spatial needs will exist in the future:

Special Education Departmental Interviews

Special Education programs and services are unlike courses offered as part of the general education curriculum in many ways. First, they intentionally have fewer students enrolled in them as required by students IEPs¹² or 504 plans. Second, the physical space required is highly dependent on the nature of the program or service being delivered. It is, therefore, impossible to determine spatial needs strictly arithmetically using only students per section and utilization rates. D&W conducted interviews with members of the Special Education faculty, staff, and departmental leadership to better understand the nature of the programs and services being offered and to identify where spatial deficiencies may exist in the future. While D&W did perform the same existing space usage analysis on special education spaces as it did on general education spaces, D&W relied on the expertise of the special educators to identify spatial requirements.

Faculty & Staff Survey

In collaboration with the members of the Working Group, D&W developed and published an anecdotal survey and collected responses from faculty and staff related to perceived spatial needs (Appendix XXX). The intent was to ensure that the feasibility study fully explored potential needs by uncovering needs that might not otherwise be known. Statements about perceived needs were crafted in such a way to allow respondents to identify his/her individual level of agreement. While the results of the survey indicated general consensus that the high school needed more general education classrooms, the survey also revealed an unexpected outcome – a perceived need for more intentional student collaboration space.

Excerpt from Faculty and Staff Survey

¹² Individualized Education Plan (IEP)

In this context, student collaboration space refers to intentionally designed locations where students can gather to work in groups and as individuals. These spaces could be learning environments that are supplemental to general education classrooms as ways to augment their capabilities. These spaces could also be ad hoc spaces for students to use and customize at their discretion when their schedules permit. The illustration on the following page represents just one example of a series of high school collaboration spaces. In general terms, these spaces should exhibit one or more of the following characteristics.

- Some Noisy
- Some Quiet
- Some Open
- Some Enclosed
- Access to WiFi
- Lots of Vertical Writing Surface
- Access to Digital Display
- Some Hard Furnishings
- Some Soft Furnishings
- Highly Mobile Furnishings
- Food Friendly

While Needham High School has historically allowed the Cafeteria and portions of the Library to perform this function, neither space exhibits all of these characteristics and feel as if designed for an alternative function first and a collaboration space as an after-thought.

Battle Creek Area Mathematics & Science Center – Battle Creek, MI | TowerPinkster - Architects

The pages that follow contain the raw data used and calculations performed to determine future space needs.

			Day			А				в		Castian	Demonstrate of	The section i	Theoretical	Theoretical	Theoretical
			Period	1	2	3	4	5	6	7	Total Students Enrolled	Enrollment	Total	Students	Sections Needed Future	Sections Needed Future	Space Need Future
			Minutes, Monday - Thursday	90	90	80	50	50	90	90		Сар	Population	Enrolled, Future	(Decimal)	(Rounded)	@85%
			Minutes, Friday	65	70	85	50	50									
		Course		Ex	isting N	lumbe	er of Stu	udents	s Enrol	lled							
Faculty Name	Room #	Number	Course Title	<16		16 t	o 22		≥	23							
Katherine Maffei	717	0101.1	English 9 Acc	21	22						-						
Coatt Kally	717	0101.2	English 9 Acc		22						-						
Scott Kelly	715	0101.3	English 9 Acc		21				25		137	28	8.26%	148.64	6.19	7	1.18
Kelsey Bishen	715	0101.4	English 9 Acc	22					25		-						
Ketsey Bishop	722	0101.5	English 9 Acc	23		25					-						
Katherine Marier	/1/	0101.0	English 9 Acc			25							1			1	
Karen McCalley	719	0102.1	English 9 Hon		25												
Jonathan Cooke	720	0102.10	English 9 Hon							25							
Kelsey McCarthy	715	0102.2	English 9 Hon			27					-						
Katherine Fanous	732	0102.3	English 9 Hon				20				_						
Elizabeth Wiedner	701	0102.4	English 9 Hon				20				232	28	13.98%	251.72	10.49	11	1.85
Laura Brinkmann	722	0102.5	English 9 Hon				20								_3.13		
Scott Kelly	715	0102.6	English 9 Hon				20				-						
Katherine Fanous	732	0102.7	English 9 Hon					25			-						
Katherine Fanous	732	0102.8	English 9 Hon						26								
Laura Brinkmann	722	0102.9	English 9 Hon							24							
Scott Kelly	715	0103.1	English 9	10		45					_						
Kalsov Pishon	720	0103.2	English 9			13	10				47	16	3.00%	54.00	3.38	4	0.67
Karen McCalley	719	0103.5	English 9				10		12		_						
Karch Wiccalley	715	0103.4	Linglish S						12								
Laura Brinkmann	722	0201.1	English 10 Acc		19						_						
Robert Flaggert	726	0201.2	English 10 Acc		22						-						
Robert Flaggert	726	0201.3	English 10 Acc			23					-						
Kathryn Clayton	701	0201.4	English 10 Acc			25											
Jonathan Cooke	720	0201.5	English 10 Acc				28				210	28	12.66%	227.85	9.49	10	1.68
Jonathan Cooke	720	0201.6	English 10 Acc						25		-						
Kathryn Clayton	701	0201.7	English 10 Acc						25								
Elizabeth Cox	726	0201.8	English 10 Acc							22							
Katherine Fanous	732	0201.9	English 10 Acc							21							
Robert Flaggert	726	0202.1	English 10 Hon	20													
Douglas Kopcso	724	0202.2	English 10 Hon		25												
Elizabeth Brown	721	0202.3	English 10 Hon			25											
Kelsey Bishop	719	0202.4	English 10 Hon				27										
Douglas Kopcso	724	0202.5	English 10 Hon				27				206	28	12.42%	223.51	9.31	10	1.68
Kelsey McCarthy	715	0202.6	English 10 Hon					23									
Robert Flaggert	726	0202.7	English 10 Hon						19								
Elizabeth Brown	721	0202.8	English 10 Hon						17								
Kelsey Bishop	717	0202.9	English 10 Hon							23							
, -r																	
Elizabeth Wiedner	701	0203.1	English 10							12	20	18	1.21%	21.70	1.21	2	0.34
Katherine Fanous	732	0203.2	English 10		8												

Stephen Koup	723	0301.1	English 11 Acc	20										
Stephen Koup	723	0301.2	English 11 Acc			20		63	28	3.80%	68.35	2.85	3	0.50
Theresa Levy	730	0301.3	English 11 Acc			23								

Brian Herrmann	701	0302.1	English 11 Hon	20												
Karl Heckler	702	0302.2	English 11 Hon		20											
Elizabeth Cox	724	0302.3	English 11 Hon			25										
Elizabeth Cox	726	0302.4	English 11 Hon				24			166	28	10.01%	180.11	7.50	8	1.34
Brian Herrmann	702	0302.5	English 11 Hon					23								
Karl Heckler	702	0302.6	English 11 Hon						26							
Douglas Kopcso	724	0302.7	English 11 Hon						2	3						
																

Christopher Farnsworth	724	0303.1	English 11	13	20	10	1 60%	20.20	1 60	2	0.24
					20	10	1.03%	50.50	1.09	2	0.54
Douglas Kopcso	722	0303.2	English 11	15							

			Day			Α			В		Section	Porcontago of	Theoretical	Theoretical	Theoretical	Theoretical
			Period	1	2	3	4	5	6	7 Total Students Enrolled	Enrollment	Total	Students	Sections Needed Future	Sections Needed Future	Space Need Future
			Minutes, Monday - Thursday	90	90	80	50	50	90 9	0	Сар	Population	Enrolled, Future	(Decimal)	(Rounded)	@85%
			Minutes, Friday	65	70	85	50	50								
		Course		Ex	isting I	Numbe	er of Stu	udents I	Enrolled							
Faculty Name	Room #	Number	Course Title	<16		16 to	o 22		≥23				1	1		
Karen McCalley	719	0311.1	AP Language and Composition	26												
Karl Heckler	702	0311.2	AP Language and Composition	27												
Karen McCalley	719	0311.3	AP Language and Composition	_		26				133	28	8.02%	144.30	6.01	7	1.18
Laura Brinkmann	722	0311.4	AP Language and Composition						27							
Christopher Farnsworth	723	0311.5	AP Language and Composition						2	7						
Elizabeth Brown	721	0421.1	AP Literature and Composition		28					76	20	A E 00/	07 16	2 11	Λ	0.67
Theresa Levy	730	0421.2	AP Literature and Composition			25				/0	20	4.30%	02.40	5.44	4	0.07
Katherine Maffei	717	0421.3	AP Literature and Composition						23							L
Brian Herrmann	701	0431.1	English 12 Acc		27											
Brian Herrmann	702	0431.2	English 12 Acc			28										
Elizabeth Brown	721	0431.3	English 12 Acc				25			135	28	8.14%	146.47	6.10	7	1.18
Elizabeth Cox	726	0431.4	English 12 Acc					27								
Patrick Gallagher	724	0431 5	English 12 Acc						28							
Theresa Levy	730	0432.1	English 12 Hon	22												
Christopher Farnsworth	724	0432.2	English 12 Hon	22												
Stephen Koup	723	0432.3	English 12 Hon			19				139	28	8.38%	150.81	6.28	7	1.18
Christopher Farnsworth	723	0432.4	English 12 Hon				27			100	20	0.0070	100.01	0.20		1.10
Stephen Koup	723	0432.5	English 12 Hon						21							
Theresa Levy	730	0432.6	English 12 Hon						2	8						
										10	10	1 000/	10 52	1 00	2	0.24
Katherine Maffei	719	0433.1	English 12						1	8 10	10	1.00%	19.55	1.08	2	0.54
[• • •		
Kathryn Clayton	728	0491.1	The Greater Boston Project Acc	2	28					28	50	1.69%	30.38	0.61	1	0.17
Flizabeth Weidner	732	0520.1	Exper Writing	12						12	28	0.72%	13.02	0.54	1	0.17
	, 52	0020.1														
Karl Heckler	702	0530.1	Film Studies				23			23	28	1.39%	24.95	1.04	2	0.34
FNGUS															80	15.00
LINGLIS			INT JUD-IUTAL												00	12.00

Mary Bashir	416	1121.1	French 2 Acc			14		30	26	1.81%	32.55	1.36	2	0.34
Mary Bashir	416	1121.2	French 2 Acc			16	6							
Many Bashir	416	1122 1	French 2 Hon	17				_				_		
Mary Bashir	416	1122.2	French 2 Hon	14				31	26	1.87%	33.63	1.40	2	0.34
													1	
Maurice Louis	414	1131.1	French 3 Acc			18		39	26	2.35%	42.31	1.76	2	0.34
Maurice Louis	414	1131.2	French 3 Acc				21						_	
Maurice Louis	414	1132.1	French 3 Hon			16		16	28	0.96%	17.36	0.72	1	0.17
													_	-
Mary Bashir	416	1141.1	French 4 Acc		2	21		21	28	1.27%	22.78	0.95	1	0.17
								22	26	1 2 2 0/	72 07	0.00	1	0 17
Maurice Louis	414	1142.1	French 4 Hon		22			22	20	1.55%	23.87	0.99	L	0.17
Maurice Louis	414	1151.1	AP French 5	9				9	26	0.54%	9.76	0.41	1	0.17
		1											1	1
Maurice Louis	414	1161.1	French 5 Acc	2				2	26	0.12%	2.17	0.09	1	0.17
Peter Caccavale	415	1311.1	Latin 1 Acc	25				51	26	3.07%	55.33	2.31	3	0.50
Peter Caccavale	415	1311.2	Latin 1 Acc		26									
Peter Caccavale	415	1312.1	Latin 1 Hon			27		F 4	20	2.250/		2.44	2	0.50
Charlotte Webber	417	1312.2	Latin 1 Hon		27			54	28	3.25%	58.59	2.44	3	0.50
													1	
Peter Caccavale	415	1321.1	Latin 2 Acc			24								
Charlotte Webber	417	1321.2	Latin 2 Acc	20				64	26	3.86%	69.44	2.89	3	0.50
Peter Caccavale	415	1321.3	Latin 2 Acc				20							
Lauren Downey	417	1322.1	Latin 2 Hon	22			_	40	26	2.41%	43.40	1.81	2	0.34
Lauren Downey	417	1322.2	Latin 2 Hon			18								
	410	1224.4			21									
Lauren Downey	416	1331.1	Latin 3 Acc		21			43	28	2.59%	46.65	1.94	2	0.34
Lauren Downey	417	1331.2	Latin 3 Acc		1 1		22							

			Day			Α			В			Continu	Deveente of	Theoretical	Theoretical	Theoretical	Theoretical
			Period	1	2	3	4	5	6	7	Total Students	Enrollment	Percentage of Total	Students	Sections	Sections	Space Need
			Minutes, Monday - Thursday	90	90	80	- 50	50	90	9 0	Enrolled	Сар	Population	Enrolled, Future	(Decimal)	(Rounded)	@85%
			Minutes, Friday	65	70	85	50	50									
				E)	xisting I	Numbe	er of Stu	udents	Enrolle	ed							
Faculty Name	Room #	Course Number	Course Title	<16		16 t	o 22		≥2:	3							
Peter Caccavale	415	1332.1	Latin 3 Hon		18							20	2 470/	44.40	1.05	2	0.24
Peter Caccavale	415	1332.2	Latin 3 Hon						23		41	26	2.47%	44.48	1.85	2	0.34
	.115	1002.12															
Lauren Downey	417	1341.1	Latin 4 Acc				13				13	26	0.78%	14.10	0.59	1	0.17
											•	-	0.400/	2.25	0.54		0.47
Lauren Downey	417	1342.1	Latin 4 Hon				3				3	6	0.18%	3.25	0.54	1	0.17
Louron Finusono	700	1512.1	Coonsish 1	20													
	703	1515.1	Spanish 1								41	20	2.47%	44.48	2.22	3	0.50
Kathleen Eschle	/12	1513.2	Spanish 1			21											
Jennifer Hopkin	713	1521.1	Spanish 2 Acc	25													
Jennifer Hopkin	721	1521.2	Spanish 2 Acc					21									
lennifer Honkin	713	1521 3	Spanish 2 Acc							24	102	26	6.15%	110.67	4.61	5	0.84
Chatherine Street	707	1521 /	Spanish 2 Acc	1			1/										
Chatherine Street	707	1521.4	Spanish 2 Acc				14	10									
Chatherine Street	707	1521.5	Spanisn 2 Acc					18									
Monica Sandoval	713	1522.1	Spanish 2 Hon					21									
Monica Sandoval	713	1522.2	Spanish 2 Hon						24			26	F (10)	100.00	4 20	-	0.04
Lauren Finucane	709	1522.3	Spanish 2 Hon		26						93	26	5.61%	100.90	4.20	5	0.84
Lauren Finucane	709	1522.0	Spanish 2 Hon	-						22							
Lauren mucane	703	1322.4	Spanish 2 hon							22							
Jennifer Hopkin	713	1523.1	Spanish 2		13						21	20	1 97%	22.62	1 69	2	0.24
Meaghan McSherry	711	1523.2	Spanish 2			18					21	20	1.07/0	33.03	1.00	2	0.54
Meaghan McSherry	711	1531.1	Spanish 3 Acc						20								
Meaghan McSherry	711	1531.2	Spanish 3 Acc	_						24							
Monica Sandoval	714	1531.3	Spanish 3 Acc				25				120	26	7.23%	130.20	5.42	6	1.01
Cara Van Cott	714	1531.4	Spanish 3 Acc		25												
Cara Van Cott	714	1531.5	Spanish 3 Acc							26							
Chatherine Street	707	1532.1	Spanish 3 Hon	15							-						
Chatherine Street	707	1532.2	Spanish 3 Hon		19												
Kathleen Eschle	712	1532.2	Spanish 3 Hon		19						85	26	5.12%	92.22	3.84	4	0.67
Kathleen Eschle	711	1532.4	Spanish 3 Hon					16									
Kathleen Eschle	712	1532.5	Spanish 3 Hon						16								
Cara Van Cott	714	1533.1	Spanish 3					13			27	20	1.63%	29.29	1.46	2	0.34
Chatherine Street	707	1533.2	Spanish 3						14								
Kathleen Eschle	712	1541.1	Spanish 4 Acc	16							~	26	2.000	60 44	2.00	•	0.50
Lauren Finucane	709	1541.2	Spanish 4 Acc	—			24				64	26	3.86%	69.44	2.89	3	0.50
Lauren Finucane	709	1541.3	Spanish 4 Acc					24									
Keara Eagan	716	1542.1	Spanish 4 Hon	+	18						-						
Cara Van Cott	714	1542.2	Spanish 4 Hon			19					101	20	C 000/	100 50	4 5 7	_	0.04
Cara Van Cott	714	1542.3	Spanish 4 Hon						24		101	26	6.09%	109.58	4.57	5	0.84
Meaghan McSherry	711	1542.4	Spanish 4 Hon		20						-						
Meaghan McSherry	711	1542.5	Spanish 4 Hon				20										
				$\overline{}$							22	26	1 200/	2/ OF	1 04	С	0.24
Jenniter Hopkin	/13	1551.1	AP Spanish 5				23				23	20	1.33%	24.33	1.04	۷.	0.54
Keara Fagan	716	1561 1	Spanish 5 Acc				24										
Keara Eagan	716	1561.2	Spanish 5 Acc					13			51	26	3.07%	55.33	2.31	3	0.50
	710	1501.2	Spanish 5 Acc	-				13									
Kedra Eagan	/10	1501.5	Spanish 5 Acc							14							
Keara Eagan	716	1563.1	Spanish 4	10						_	10	20	0.60%	10.85	0.54	1	0.17
Yu-wen Wang	419	1602.1	Mandarin 1 Hon			24					24	26	1.45%	26.04	1.08	2	0.34
<u>,</u>																	
Yu-wen Wang	419	1612.1	wandarin 2 Hon	2							7	6	0.42%	7.59	0.32	1	0.17
Yu-wen Wang	419	1612.2	Mandarin 2 Hon					5									
Yu-wen Mang	<u>410</u>	1621 1	Mandarin 2 Acc	10							_			• -			
Vuluen Mon-	410	1621.2	Mandarin 2 Acc	-10				11			21	20	1.27%	22.78	1.14	2	0.34
	419	1021.2	iviailudi III 2 ALL			I		11			<u> </u>		<u> </u>			<u> </u>	
Yu-wen Wang	419	1622.1	Mandarin 3 Hon				5				5	13	0.30%	5.42	0.42	1	0.17
									·								
Yijie Wang	712	1631.1	Mandarin 3 Acc					23			23	26	1.39%	24.95	1.04	2	0.34
Villing	410	1633.4	Mandavia All	\neg			-				6	28	0 36%	6 51	0 27	1	0 17
ru-wen Wang	419	1032.1	iviandarin 4 Hon				Ь				U	20	0.30%	0.31	0.27	▲	0.17

David Bookston

Brett McNeice

John Shea

203

202

201

2122.2

2122.3

2082.12

Geometry Hon

Algebra 2 Hon Algebra 2 Hon

Number of Students Per Section

			Day			Α				В		6	D	Theory	Theoretical	Theoretical	Theoretical
			Period	1	2	3	4	5	6	7	Total Students Enrolled	Enrollment	Total	Students	Sections Needed Future	Sections Needed Future	Space Need Future
			Minutes, Monday - Thursday	90	90	80	50	50	90	90		Сар	Population	Enrolled, Future	(Decimal)	(Rounded)	@85%
			Minutes, Friday	65	70	85	50	50									
				Ex	isting	Numbe	er of St	udent	s Enrol	led							
Faculty Name	Room #	Course Number	Course Title	<16		16 t	:o 22		≥	23							
Yu-wen Wang	419	1641.1	Mandarin 4 Acc							25	25	28	1.51%	27.12	1.13	2	0.34
		T		-	1	1			1	1	1						
Yijie Wang	712	1671.1	AP Mandarin 5				11				11	22	0.66%	11.93	0.50	1	0.17
		1			1	1					1				1	I	1
Yijie Wang	712	1681.1	Mandarin 5				0				0	26	0.00%	0.00	0.00	0	0.00
V	ORLD	LANGU	AGE DEPARTMENT	r sui	B-T	OT	AL									81	14.00

16 Alison Borrelli 221 2002.1 Algebra 1 Hon 55 26 3.32% 59.67 2.49 3 0.50 20 2002.2 Alison Borrelli 221 Algebra 1 Hon 19 Brett McNeice 203 2002.3 Algebra 1 Hon 211 2003.1 Jason Isaacs Algebra 1 13 27 18 1.63% 29.29 1.63 2 0.34 211 2003.2 Algebra 1 Jason Isaacs

Kaitlyn Garner	223	2013.1	Geometry	12											
Kaitlyn Garner	216	2013.2	Geometry				15		40	18	2.41%	43.40	2.41	3	0.50
Adam Cole	223	2013.3	Geometry					13							
Deanna Detorie	206	2082.1	Geometry Hon	21											
Deanna Detorie	206	2082.2	Geometry Hon	1	9										
Alison Borrelli	112	2082.3	Geometry Hon	1	7										
David Bookston	201	2082.4	Geometry Hon				23								

Mark Dinneen	201	2082.5	Geometry Hon		16								
Jennifer Gould	216	2082.6	Geometry Hon	18			244	26	1/ 71%	261 71	11 02	12	2 02
Jennifer Gould	216	2082.7	Geometry Hon	26			244	20	14./1/0	204.74	11.05	12	2.02
David Bookston	201	2082.8	Geometry Hon	25									
Alison Borrelli	221	2082.9	Geometry Hon		19								
Mark Dinneen	201	2082.10	Geometry Hon			20							
Mark Dinneen	211	2082.11	Geometry Hon	23									

17

Jennifer Carmody Jennifer Carmody Jason Isaacs Richard Giacin Richard Giacin Brett McNeice	212 212 109 204 204 203	2091.1 2091.2 2091.3 2091.4 2091.5 2091.6	Geometry ACC Geometry ACC Geometry Acc Geometry Acc Geometry Acc Geometry Acc	21	23	23	24	17	150	26	9.04%	162.75	6.78	7	1.18
Brett McNeice	202	2091.7	Geometry Acc					23							
Jacklyn Persuit	204	2113.3	Algebra 2			17			32	18	1 93%	34 72	1 93	2	0 34
Jacklyn Persuit	206	2113.4	Algebra 2					15	52	10	1.55/0	54.72	1.55	L	0.54
Jessica Kondrat	214	2122.1	Algebra 2 Hon	25					_						

James Odierr	na 201	2122.4	Algebra 2 Hon			23											
Hans Batra	109	2122.5	Algebra 2 Hon				15										
Brett McNeid	ce 203	2122.6	Algebra 2 Hon				18				258	26	15 55%	279 93	11 66	12	2 02
Hans Batra	109	2122.7	Algebra 2 Hon					22			230	20	13.33/0	275.55	11.00	12	2.02
Kristen Vallier	res 206	2122.8	Algebra 2 Hon					24									
Jessica Kondr	rat 212	2122.9	Algebra 2 Hon						24								
Hans Batra	109	2122.10	Algebra 2 Hon							24							
Robert Murp	hy 211	2122.11	Algebra 2 Hon		22												
Robert Murp	hy 223	2122.12	Algebra 2 Hon				14										
			T		1									1	I		1
Andrew Lawre	ence 214	2131.1	Algebra 2 ACC					24									
Andrew Lawre	ence 214	2131.2	Algebra 2 ACC							21							
Kaitlyn Garne	er 223	2131.3	Algebra 2 Acc		22						126	26	7 59%	136 71	5 70	6	1 01
Kaitlyn Garne	er 223	2131.4	Algebra 2 Acc			21					120	20	7.3370	130.71	5.70	0	1.01
Kristen Vallier	res 221	2131.5	Algebra 2 Acc	21													
Kristen Vallier	res 206	2131.6	Algebra 2 Acc				17										
i			T		1									1	,		1
Richard Giac	in 202	2133.1	Adv Algebra & Trig			11					11	18	0.66%	11.93	0.66	1	0.17

			Day			Α				В		Section	Porcontago of	Theoretical	Theoretical	Theoretical	Theoretical
			Period	1	2	3	4	5	6	7	Total Students Enrolled	Enrollment	Total	Students	Sections Needed Future	Sections Needed Future	Space Need Future
			Minutes, Monday - Thursday	90	90 70	80	50	50	90	90		Сар	Population	Enrolled, Future	(Decimal)	(Rounded)	@85%
			Minutes, Friday	65			50		_								
		Course		E	xisting N	aumbe	rors		s Enro	ollea							
Faculty Name	Room #	Number	Course Title	<16		16 t	o 22		2	≥23							
Jessica Kondrat	212	2203.1	PreCalculus				19				37	18	2.23%	40.14	2.23	3	0.50
Deanna Detorie	202	2203.2	PreCalculus	<u> </u>					18								
Kaitlyn Garner	216	2212.1	PreCalculus Hon						23								
Richard Giacin	202	2212.2	PreCalculus Hon		17												
Richard Giacin	204	2212.3	PreCalculus Hon							23							
Kristen Vallieres	206	2212.4	PreCalculus Hon			22											
Kristen Vallieres	221	2212.5	PreCalculus Hon							20	210	26	12.66%	227.85	9.49	10	1.68
Jacklyn Persuit	204	2212.6	PreCalculus Hon		17							20	12.00/0	227.00	5115	10	1.00
Jacklyn Persuit	204	2212.7	PreCalculus Hon				24				_						
Jacklyn Persuit	206	2212.8	PreCalculus Hon						24		_						
Deanna Detorie	202	2212.9	PreCalculus Hon				23				_						
Deanna Detorie	202	2212.10	PreCalculus Hon					17									
Adam Cala	221	2221 1	DroColeulus AP Ass			14											
Adam Cole	221	2221.1	PreCalculus AB Acc	-		14			21		_						
lennifer Gould	225	2221.2	PreCalculus AB Acc	-		16			21		76	28	4.58%	82.46	3.44	4	0.67
Jennifer Gould	210	2221.5	PreCalculus AB Acc	-		10			25		_						
Robert Murphy	223	2231.1	PreCalculus BC Acc					25			44	28	2.65%	47.74	1.99	2	0.34
David Bookston	203	2231.2	PreCalculus BC Acc	19													
lane Chinnaswamy	112	2302 1	Calculus Hon	24													
lane Chinnaswamy	112	2302.2	Calculus Hon	_			21				-						
Jane Chinnaswamy	112	2302.3	Calculus Hon	-				23			-		0.000		6.4.0	_	
Jennifer Gould	216	2302.4	Calculus Hon							23	137	26	8.26%	148.64	6.19	/	1.18
Jason Isaacs	109	2302.5	Calculus Hon		23												
Jason Isaacs	109	2302.6	Calculus Hon			23											
								1	1								
Robert Murphy	211	2311.1	AP Calculus AB							25	70	26	4 70%	04.62			0.67
Jessica Kondrat	214	2311.2	AP Calculus AB		27						/8	26	4.70%	84.63	3.53	4	0.67
Jessica Kondrat	212	2311.3	AP Calculus AB					26									
Jennifer Carmody	212	2321.1	AP Calculus BC			25					50	20	2 010/	F 4 2F	2.20	2	0.50
Robert Murphy	211	2321.2	AP Calculus BC	25							50	28	3.01%	54.25	2.26	3	0.50
								1	1	1							
David Bookston	203	2331.1	AP Statistics		20						44	28	2.65%	47.74	1.99	2	0.34
Andrew Lawrence	214	2331.2	AP Statistics				24										
Andrew Lawrence	216	2332.1	Statistics Hon	23							40	26	2.00%	52.00	2.47	2	0.50
Andrew Lawrence	214	2332.2	Statistics Hon			25					48	26	2.89%	52.08	2.17	3	0.50
									1	1		•••	. =			•	
Mark Dinneen	201	2481.1	AP Computer Science (Math)	25							25	26	1.51%	27.12	1.13	2	0.34
Jane Chinnaswamy	112	2482 1	Intro to Computer Science (Math)						24			• •				-	
Mark Dinneen	211	2482.2	Intro to Computer Science (Math)	+			14				- 38	26	2.29%	41.23	1.72	2	0.34
								-	1	1					• • -	-	–
Hans Barta	101	2485.1	Senior STEM Capstone		2						2	15	0.12%	2.17	0.14	1	0.17

Adam Cole	221	2488.1	AP Computer Science Principles		Ð			9	26	0.54%	9.76	0.41	1	0.17
Adam Cole	219	2615.1	Personal Finance (Math)			23								
Jane Chinnasw	ramy 219	2615.2	Personal Finance (Math)	1	o			52	26	3.13%	56.42	2.35	3	0.50
Hans Barta	a 101	2615.5	Personal Finance (Math)	9										

MATHEMATICS DEPARTMENT SUB-TOTAL

95 16.00

Jennifer Regrut	104	3001.10	Biology Acc					16							
Richard Ayache	110	3001.1	Biology Acc	23											
Elliot Frank	219	3001.2	Biology Acc					o							
Richard Ayache	110	3001.3	Biology Acc		18										
Elliot Frank	108	3001.4	Biology Acc		19					24	40.040/	106.20	0.40	•	4 54
Richard Ayache	110	3001.5	Biology Acc			23			181	24	10.91%	196.38	8.18	9	1.51
Elliot Frank	108	3001.6	Biology Acc				15								
Scott Blanchette	215	3001.7	Biology Acc				14								
Elliot Frank	219	3001.8	Biology Acc					17							
Scott Blanchette	215	3001.9	Biology Acc					16							

			Day			Α			В			Section	Dorcontago of	Theoretical	Theoretical	Theoretical	Theoretical
			Period	1	2	3	4	5	6	7 Total	l Students	Enrollment	Total	Students	Sections	Sections	Space Need
			Minutes, Monday - Thursday	90	90	80	50	50	90	90	hrolled	Сар	Population	Enrolled, Future	(Decimal)	(Rounded)	@85%
			Minutes, Friday	65	70	85	50	50									
				Ex	cisting I	Numbe	er of St	udents	s Enrollec	1							
Faculty Name	Room #	Course Number	Course Title	<16		16 1	to 22		>23								
		Humber	course mic			101							1			T	
Andrew Verardo	110	3012.10	Biology Hon							20							
Victoria DaCosta	217	3012.1	Biology Hon					16									
Victoria DaCosta	217	3012.2	Biology Hon						21								
Victoria DaCosta	217	3012 3	Biology Hon							18							
Ashton Kazlo	217	3012.4	Biology Hon			24										_	
Ashtan Kazla	217	2012.4	Diology Hon		24	24				_ 1	198	24	11.93%	214.83	8.95	9	1.51
ASILON Kazio	217	3012.5	Biology Hon		24												
Andrew Verado	213	3012.6	Biology Hon	+			13										
Ashton Kazlo	217	3012.7	Biology Hon				14										
Andrew Verardo	210	3012.8	Biology Hon						24								
Mary Kay Alessi	215	3012.9	Biology Hon						24								
	210	2022.4	2: 1	15													
Mary Kay Alessi	219	3023.1	Biology	16							Л Л	18	2 65%	A7 7A	2 65	2	0 50
Elliot Frank	108	3023.2	Biology			11						10	2.05/0	4/./4	2.05	3	0.50
Mary Kay Alessi	108	3023.3	Biology							17							
Michael Hirsh	108	2101 1	Physics Acc	22													
	108	3101.1	Physics Acc														
Emily Luck	102	3101.2	Physics Acc														
Michael Hirsh	106	3101.3	Physics Acc		24												
Emily Luck	102	3101.4	Physics Acc			22				_ 1	181	24	10.91%	196.38	8.18	9	1.51
Kathryn Cadavieco	104	3101.5	Physics Acc			22											
John Sherry	103	3101.6	Physics Acc			23											
Kathryn Cadavieco	102	3101.7	Physics Acc	_				24									
John Sherry	103	3101.8	Physics Acc						23								
John Sherry	103	3112.10	Physics Hon					21									
Kathryn Cadavieco	104	3112.1	Physics Hon	18													
Kathryn Cadavieco	102	3112.11	Physics Hon						17								
Emily Luck	102	3112.12	Physics Hon							17							
John Sherry	103	3112.13	Physics Hon	_						16							
Daniel Smalley	106	3112.2	Physics Hon	19													
Patrick Corcoran	103	3112.3	Physics Hon	18						2	236	24	14.23%	256.06	10.67	11	1.85
Dnaiel Smalley	102	3112.4	Physics Hon		18												
Patrick Corcoran	104	3112.5	Physics Hon		15												
John Sherny	103	3112.6	Physics Hon		18												
Patrick Corcoran	103	2112.0	Dhysics Hon		10		10										
	104	3112.7	Physics Holi				19										
Emily Luck	102	3112.8	Physics Hon				19										
Patrick Corcoran	104	3112.9	Physics Hon					21									
Michael Hirsh	106	3123.1	Physics			12					•		4.070(
Daniel Smalley	106	3123.2	Physics				10				31	11	1.87%	33.63	3.06	4	0.67
SamerSmalley	100	5125.2	1 1173163		1			<u> </u>	ı I	I			I		1	1	
Annapurna Vakati	208	3201.1	Chemistry Acc			16											
Janet Lee Fasano	207	3201.2	Chemistry Acc				22										
Janet Lee Fasano	207	3201.3	Chemistry Acc						23								
Janet Lee Fasano	207	3201.4	Chemistry Acc							22 1	137	24	8.26%	148.64	6.19	7	1.18
Robert Kiefer	210	3201 5	Chemistry Acc	15													
Debert Kiefer	210	2201.5	Chemistry Ace			10											
	210	3201.0	chemistry Acc			10											
Robert Klefer	210	3201.7	Chemistry Acc				23										
Janet Lee Fasano	207	3212.1	Chemistry Hon	18													
Annapurna Vakati	208	3212.10	Chemistry Hon				22										
Melanie Bunda	209	3717 11	Chemistry Hon	1						23							
	203	2212.11	Chamilton II			24											
	207	3212.2	Chemistry Hon	+		21											
Jill Krajewski	207	3212.3	Chemistry Hon		20				\vdash			24	12 560/	2// 12	10 17	11	1 95
Melanie Bunda	209	3212.4	Chemistry Hon	_	21				\vdash	4	223	24	13.30%	274.12	10.17	**	1.03
Kathryn Cadavieco	208	3212.5	Chemistry Hon	—	20												
Jill Krajewski	209	3212.6	Chemistry Hon			19											
Jill Krajewski	207	3212.7	Chemistry Hon	_				20									
Melanie Bunda	209	3212.8	Chemistry Hon	_				19									
Robert Kiefer	210	3212.9	Chemistry Hon					22									

Annapurna Vakati	208	3223.1	Chemistry	11				22	10	1 20%	24 OF	1 20	2	0.24
Robert Kiefer	210	3223.2	Chemistry				12	25	10	1.55%	24.95	1.59	2	0.54

Period Minuse, Monthy-Thursde, Diffuse, Monthy-Thursde, Minuse, Minuse, Minuse, Minuse, Minuse, Minuse, Minuse, Minuse, Minuse, Minuse, Minuse, Minuse,				Day			Α				В		Continu	Deveentege of	Theoretical	Theoretical	Theoretical	Theoretical
Minder, Monday Dial Dial Cap Papalation Envolued, future Minder, Monday Page Bill				Period	1	2	3	4	5	6	7	Total Students	Enrollment	Total	Students	Sections	Sections	Space Need
Vinnets, Fridy 6 70 85 90 90 District Number Courter				Minutes. Monday - Thursday	90	90	80	- 50	50	90	90	Enrolled	Сар	Population	Enrolled, Future	(Decimal)	(Rounded)	@85%
Ling Numer Source For For Source For Source For Source For For Source For Source For Source For For Source For For Source For Source For For Source For For Source For For Source For				Minutes, Friday	65	70	85	50	50									
Faculty Name Room # Course Title Clip Clip <thclip< th=""> Clip <thclip< td="" thc<=""><td></td><td></td><td></td><td></td><td>E</td><td>kisting</td><td>Numbe</td><td>er of St</td><td>udents</td><td>5 Enr</td><td>olled</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thclip<></thclip<>					E	kisting	Numbe	er of St	udents	5 Enr	olled							
Frace/Ray Name Rom # Number Course Title 14 16 to 22 12 14 41 24 2.47% 44.48 1.85 2 0.34 Mary Kay Alessi 215 3401.1 Physiology Acc 19 41 24 2.47% 44.48 1.85 2 0.34 Soct Blanchette 215 3401.2 Physiology Acc 19 46 24 2.77% 49.91 2.08 3 0.50 Soct Blanchette 215 3412.1 Physiology Hon 12 20 46 24 2.77% 49.91 2.08 3 0.50 Soct Blanchette 209 342.3 Physiology Hon 20 48 24 2.89% 52.08 2.17 3 0.50 Ahton Kado 101 3531.1 Environmental Science Acc 24 24 1.45% 26.04 1.08 2 0.34 Melanie Bunda 209 3542.1 Experiencing Chemistry Hon 16 33 24 <th></th> <th></th> <th>Course</th> <th></th>			Course															
Mary Kay Alesi 219 3401.1 Physiology Acc 22 41 24 2.47% 44.48 1.85 2 0.34 Mary Kay Alesi 115 3401.2 Physiology Acc 13 13 41 24 2.47% 44.48 1.85 2 0.34 Scott Blanchette 215 3412.2 Physiology Hon 14 24 2.47% 49.91 2.08 3 0.50 Scott Blanchette 209 3412.3 Physiology Hon 10 20 12 12 0.72% 13.02 0.54 1 0.17 Adhton Karlo 101 351.1 Environmental Science Acc 10 10 48 24 2.89% 52.08 2.17 3 0.50 Environmental Science Hon 20 24 24 1.45% 26.04 1.08 2 0.34 Metanie Bunda 209 354.21 Experiencing Chemistry Hon 10 10 1.49 2 0.34 Metanie Bunda 209 354.21 Experiencing Chemistry Hon 18 48 24 <td< td=""><td>Faculty Name</td><td>Room #</td><td>Number</td><td>Course Title</td><td><16</td><td></td><td>16 t</td><td>o 22</td><td></td><td></td><td>≥23</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Faculty Name	Room #	Number	Course Title	<16		16 t	o 22			≥23							
Mary Kay Alexil 215 3401.2 Phytology Acc. 19 14 14 14.0 14.0 10.0 12 0.034 Sort Blanchette 215 3412.1 Phytology Hon 16 10 46 24 2.77% 49.91 2.08 3 0.50 Sort Blanchette 215 3412.2 Phytology Hon 10 70 46 24 2.77% 49.91 2.08 3 0.50 Sort Blanchette 209 3412.3 Phytology Hon 10 70 46 24 2.77% 49.91 2.08 3 0.50 Sort Blanchette 209 3412.3 Phytology Hon 10 70 48 24 2.89% 52.08 2.17 3 0.50 Athon Kado 101 3531.1 Environmental Science Acc 10 24 24 1.45% 26.04 1.08 2 0.34 Melanie Bunda 200 352.1 Experiencing Chemistry Hon 18 33 24 1.99% 35.80 1.49 2 0.34 Melanie Bunda<	Mary Kay Alessi	219	3401.1	Physiology Acc			22					41	24	2 47%	44 48	1 85	2	0 34
Sort Blanchette 215 3412.1 Physiology Hon 14 46 24 2.77% 49.91 2.08 3 0.50 Sort Blanchette 209 3412.3 Physiology Hon 30 30 46 24 2.77% 49.91 2.08 3 0.50 Patrick Corcoran 104 3502.1 Modern Physics Hon 11 12 12 24 0.72% 13.02 0.54 1 0.17 Adhon Kazlo 101 3531.1 Environmental Science Acc 26 48 24 2.89% 52.08 2.17 3 0.50 Emily Luck 101 3532.1 Environmental Science Acc 26 48 24 2.89% 52.08 2.17 3 0.50 Emily Luck 101 3532.1 Environmental Science Hon 26 24 24 1.45% 26.04 1.08 2 0.34 Melanie Bunda 209 3542.1 Environmental Science 10 33 24 1.99% 35.80 1.49 2 0.34 Melanie Bunda 209	Mary Kay Alessi	215	3401.2	Physiology Acc					19			71	27	2.4770	0	1.05	-	0.34
Scott Blanchette 215 3412.1 Physiology Hon 12 46 24 2.77% 49.91 2.08 3 0.50 Scott Blanchette 293 342.2 Physiology Hon 20 20 46 24 2.77% 49.91 2.08 3 0.50 Patrick Corcoran 104 3502.1 Modern Physics Hon 12 12 24 0.72% 13.02 0.54 1 0.17 Auton Kazlo 101 3531.1 Environmental Science Acc 20 24 24 2.89% 52.08 2.17 3 0.50 Emily Luck 301 3532.1 Environmental Science Acc 20 24 24 1.45% 26.04 1.08 2 0.34 Melanie Bunda 209 3542.1 Experiencing Chemistry Hon 18 33 24 1.99% 35.80 1.49 2 0.34 Melanie Bunda 209 3542.2 Experiencing Chemistry Hon 18 33 24 1.99% 35.80 1.49 2 0.34 Melanie Bunda 209	, , ,	1		, 0,					1			· · ·		1	1	1	1	
Scott Blanchette 215 3412.2 Physiology Hon 10 20 46 24 2.77% 49.91 2.08 3 0.50 Scott Blanchette 200 3412.3 Physiology Hon 10 20 12 24 0.72% 13.02 0.54 1 0.17 Patrick Corcoran 104 3502.1 Modern Physics Hon 10 12 12 24 0.72% 13.02 0.54 1 0.17 Ashton Kazlo 101 3531.1 Environmental Science Acc 26 26 24 2.89% 52.08 2.17 3 0.50 Emily Luck 101 3532.1 Environmental Science Hon 26 24 24 1.45% 26.04 1.08 2 0.34 Melanie Bunda 209 3542.2 Experiencing Chemistry Hon 18 33 24 1.99% 35.80 1.49 2 0.34 Richard Ayache 110 3640.1 Marine Science 36 36 24 2.89% 52.08 2.17 3 0.50 Richard Ayach	Scott Blanchette	215	3412.1	Physiology Hon	14													
October Nation One	Scott Blanchette	215	2/12 2	Physiology Hop			12					46	24	2.77%	49.91	2.08	3	0.50
Scott Blanchette 209 3412.3 Physiology Ion 20 20 20 20 Patrick Carcoran 104 3502.1 Madern Physics Hon 12 12 12 24 0.72% 13.02 0.54 1 0.17 Ashton Kazlo 101 3531.1 Environmental Science Acc 24 48 24 2.89% 52.08 2.17 3 0.50 Ashton Kazlo 101 3531.2 Environmental Science Acc 104 24 2.4 1.45% 26.04 1.08 2 0.34 Melanie Bunda 209 3542.1 Experiencing Chemistry Hon 15 33 24 1.99% 35.80 1.49 2 0.34 Melanie Bunda 209 3542.1 Experiencing Chemistry Hon 18 33 24 1.99% 35.80 1.49 2 0.34 Richard Ayache 110 3640.1 Marine Science 22 48 24 2.89% 52.08 2.17 3 0.50	Scott Blanchette	215	5412.2	r liyslology fioli			12											
Patrick Corcoran 104 3502.1 Modern Physics Hon 12 12 12 24 0.72% 13.02 0.54 1 0.17 Ashton Kazlo 101 3531.1 Environmental Science Acc 10 10 48 24 2.89% 52.08 2.17 3 0.50 Ashton Kazlo 101 3531.2 Environmental Science Acc 10 10 24 1.45% 26.04 1.08 2 0.34 Emily Luck 101 3532.1 Environmental Science Hon 10 24 24 1.45% 26.04 1.08 2 0.34 Melanie Bunda 209 3542.1 Experiencing Chemistry Hon 18 33 24 1.99% 35.80 1.49 2 0.34 Melanie Bunda 209 3542.2 Experiencing Chemistry Hon 18 33 24 1.99% 35.80 1.49 2 0.34 Richard Ayache 110 3640.1 Marine Science 28 48 <td< td=""><td>Scott Blanchette</td><td>209</td><td>3412.3</td><td>Physiology Hon</td><td></td><td></td><td></td><td></td><td></td><td>20</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Scott Blanchette	209	3412.3	Physiology Hon						20								
Patrick Corcoran 104 3502.1 Modern Physics Hon 12 12 12 12 12 13.02 0.0.4 1 0.17 Ashton Kazlo 101 3531.1 Environmental Science Acc 24 48 24 2.89% 52.08 2.17 3 0.50 Ashton Kazlo 101 3531.2 Environmental Science Acc 24 24 24 2.89% 52.08 2.17 3 0.50 Emily Luck 101 3532.1 Environmental Science Hon 26 24 24 1.45% 26.04 1.08 2 0.34 Melanie Bunda 209 3542.1 Experiencing Chemistry Hon 15 33 24 1.99% 35.80 1.49 2 0.34 Richard Ayache 110 3640.1 Marine Science 28 48 24 2.89% 52.08 2.17 3 0.50 Richard Ayache 110 3640.1 Marine Science 28 48 24 2.89% 52.08 2.17 3 0.50 Richard Ayache 110 <												12	24	0 72%	12 02	0.54	1	0 17
Ashton Kazlo 101 3531.1 Environmental Science Acc 34 48 24 2.89% 52.08 2.17 3 0.50 Ashton Kazlo 101 3531.2 Environmental Science Acc 24 24 2.489% 52.08 2.17 3 0.50 Emily Luck 101 3532.1 Environmental Science Acc 24 24 1.45% 26.04 1.08 2 0.34 Melanie Bunda 209 3542.1 Experiencing Chemistry Hon 15 33 24 1.99% 35.80 1.49 2 0.34 Melanie Bunda 209 3542.2 Experiencing Chemistry Hon 18 33 24 1.99% 35.80 1.49 2 0.34 Richard Ayache 110 3640.1 Marine Science 24 48 24 2.89% 52.08 2.17 3 0.50 Jill Krajewski 213 3701.1 AP Biology 23 24 24 2.89% 52.08 2.17 3 0.50 Michael Hirsh 108 3701.1 AP Biology	Patrick Corcoran	104	3502.1	Modern Physics Hon						12		12	24	0.72/0	15.02	0.54	–	0.17
Ashton Kazlo 101 3531.1 Environmental Science Acc 24 48 24 2.89% 52.08 2.17 3 0.50 Ashton Kazlo 101 3531.2 Environmental Science Acc 101 26 24 24 1.45% 26.04 1.08 2 0.34 Melanie Bunda 209 3542.1 Experiencing Chemistry Hon 15 33 24 1.99% 35.80 1.49 2 0.34 Melanie Bunda 209 3542.2 Experiencing Chemistry Hon 13 38 33 24 1.99% 35.80 1.49 2 0.34 Richard Ayache 110 3640.1 Marine Science 24 24 48 24 2.89% 52.08 2.17 3 0.50 Jill Krajewski 213 3701.1 AP Biology 22 45 24 2.71% 48.82 2.03 3 0.50 Michael Hirsh 108 3801.1 AP Physics 17 17 24 2.11% 37.97 1.58 2 0.34 Michael Hirsh <td></td>																		
Ashton Kazlo 101 3531.2 Environmental Science Acc 28 Emily Luck 101 3532.1 Environmental Science Hon 28 24 24 1.45% 26.04 1.08 2 0.34 Melanie Bunda 209 3542.1 Experiencing Chemistry Hon 15 33 24 1.99% 35.80 1.49 2 0.34 Melanie Bunda 209 3542.2 Experiencing Chemistry Hon 15 33 24 1.99% 35.80 1.49 2 0.34 Richard Ayache 110 3640.1 Marine Science 26 48 24 2.89% 52.08 2.17 3 0.50 Richard Ayache 110 3640.2 Marine Science 21 21 48 24 2.89% 52.08 2.17 3 0.50 Mil Krajewski 213 3701.1 AP Biology 22 45 24 2.71% 48.82 2.03 3 0.50 Mili Krajewski 213 3701.2 AP Biology 22 45 24 2.11% 37.97	Ashton Kazlo	101	3531.1	Environmental Science Acc						24		48	24	2.89%	52.08	2.17	3	0.50
Emily Luck 101 3532.1 Environmental Science Hon 24 24 24 1.45% 26.04 1.08 2 0.34 Melanie Bunda 209 3542.1 Experiencing Chemistry Hon 15 33 24 1.99% 35.80 1.49 2 0.34 Melanie Bunda 209 3542.2 Experiencing Chemistry Hon 18 33 24 1.99% 35.80 1.49 2 0.34 Richard Ayache 110 3640.1 Marine Science 26 48 24 2.89% 52.08 2.17 3 0.50 Richard Ayache 110 3640.2 Marine Science 24 45 24 2.71% 48.82 2.03 3 0.50 Mil Krajewski 213 3701.2 AP Biology 23 17 35 24 2.71% 48.82 2.03 3 0.50 Milchael Hirsh 108 3801.2 AP Physics 17 35 24 2.11% 37.97 <td>Ashton Kazlo</td> <td>101</td> <td>3531.2</td> <td>Environmental Science Acc</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>24</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Ashton Kazlo	101	3531.2	Environmental Science Acc							24							
Emily Luck 101 3532.1 Environmental Science Hon 26 24 24 1.45% 26.04 1.08 2 0.34 Melanie Bunda 209 3542.1 Experiencing Chemistry Hon 15 33 24 1.99% 35.80 1.49 2 0.34 Melanie Bunda 209 3542.2 Experiencing Chemistry Hon 18 33 24 1.99% 35.80 1.49 2 0.34 Richard Ayache 110 3640.1 Marine Science 24 24 289% 52.08 2.17 3 0.50 Richard Ayache 110 3640.2 Marine Science 24 24 2.89% 52.08 2.17 3 0.50 Richard Ayache 110 3640.2 Marine Science 24 24 2.89% 52.08 2.17 3 0.50 Michael Hirsh 108 3701.1 AP Biology 22 45 24 2.71% 48.82 2.03 3 0.50												24	24	4 450/	26.04	4.00	•	0.04
Melanie Bunda 209 3542.1 Experiencing Chemistry Hon 15 33 24 1.99% 35.80 1.49 2 0.34 Melanie Bunda 209 3542.2 Experiencing Chemistry Hon 18 33 24 1.99% 35.80 1.49 2 0.34 Richard Ayache 110 3640.1 Marine Science 26 48 24 2.89% 52.08 2.17 3 0.50 Richard Ayache 110 3640.2 Marine Science 24 24 2.89% 52.08 2.17 3 0.50 Kichard Ayache 110 3640.2 Marine Science 24 24 2.89% 52.08 2.17 3 0.50 Michael Mirsh 213 3701.1 AP Biology 22 45 24 2.71% 48.82 2.03 3 0.50 Michael Hirsh 108 3801.1 AP Physics 17 18 35 24 2.11% 37.97 1.58 2	Emily Luck	101	3532.1	Environmental Science Hon					24			24	24	1.45%	26.04	1.08	2	0.34
Melanie Bunda 209 3542.1 Experiencing Chemistry Hon 15 33 24 1.99% 35.80 1.49 2 0.34 Melanie Bunda 209 3542.2 Experiencing Chemistry Hon 18 18 33 24 1.99% 35.80 1.49 2 0.34 Richard Ayache 110 3640.1 Marine Science 24 48 24 2.89% 52.08 2.17 3 0.50 Richard Ayache 110 3640.2 Marine Science 24 45 24 2.71% 48.82 2.03 3 0.50 Jill Krajewski 213 3701.1 AP Biology 23 24 45 24 2.71% 48.82 2.03 3 0.50 Michael Hirsh 108 3801.1 AP Physics 17 35 24 2.11% 37.97 1.58 2 0.34 Michael Hirsh 108 3801.2 AP Physics 17 18 35 24 2.11% 37.97 1.58 2 0.34 Michael Hirsh 106																		
Melanie Bunda 209 3542.2 Experiencing Chemistry Hon 18 0.50 1.10 0.50 1.10<	Melanie Bunda	209	3542.1	Experiencing Chemistry Hon	15							33	24	1.99%	35.80	1.49	2	0.34
Richard Ayache 110 3640.1 Marine Science 24 48 24 2.89% 52.08 2.17 3 0.50 Richard Ayache 110 3640.2 Marine Science 24 24 48 24 2.89% 52.08 2.17 3 0.50 Jill Krajewski 213 3701.1 AP Biology 23 22 45 24 2.71% 48.82 2.03 3 0.50 Michael Hirsh 108 3801.1 AP Physics 17 17 35 24 2.11% 37.97 1.58 2 0.34 Michael Hirsh 108 3801.2 AP Physics 17 17 17 24 1.02% 18.44 0.77 1 0.17	Melanie Bunda	209	3542.2	Experiencing Chemistry Hon				18									-	
Richard Ayache 110 3640.1 Marine Science 24 24 48 24 2.89% 52.08 2.17 3 0.50 Richard Ayache 110 3640.2 Marine Science 24 24 48 24 2.89% 52.08 2.17 3 0.50 Richard Ayache 110 3640.2 Marine Science 24 24 48 24 2.89% 52.08 2.17 3 0.50 Jill Krajewski 213 3701.1 AP Biology 23 22 45 24 2.71% 48.82 2.03 3 0.50 Michael Hirsh 108 3801.1 AP Physics 17 3 35 24 2.11% 37.97 1.58 2 0.34 Michael Hirsh 108 3801.1 AP Physics 18 35 24 2.11% 37.97 1.58 2 0.34 Michael Hirsh 106 3801.2 AP Physics 17 17 17 24 1.02% 18.44 0.777 1 0.17								1				1			1			
Richard Ayache 110 3640.2 Marine Science 24 46 24 2.03/6 32.06 2.17 3 0.30 Jill Krajewski 213 3701.1 AP Biology 22 45 24 2.71% 48.82 2.03 3 0.50 Andrew Verado 213 3701.2 AP Biology 23 2 45 24 2.71% 48.82 2.03 3 0.50 Michael Hirsh 108 3801.1 AP Physics 17 35 24 2.11% 37.97 1.58 2 0.34 Michael Hirsh 108 3801.2 AP Physics 18 35 24 2.11% 37.97 1.58 2 0.34 Annapurna Vakati 208 3901.1 AP Chemistry 17 17 17 10.02% 18.44 0.777 1 0.17	Richard Ayache	110	3640.1	Marine Science					24			ло	24	2 80%	E2 09	2 1 7	2	0 50
Image: Note of the system Image: Solution	Richard Avache	110	3640.2	Marine Science						24		40	24	2.09/0	52.08	2.17	5	0.50
Jill Krajewski 213 3701.1 AP Biology 22 45 24 2.71% 48.82 2.03 3 0.50 Andrew Verado 213 3701.2 AP Biology 23 45 24 2.71% 48.82 2.03 3 0.50 Michael Hirsh 108 3801.1 AP Physics 17 35 24 2.11% 37.97 1.58 2 0.34 Daniel Smalley 106 3801.2 AP Physics 18 35 24 1.02% 18.44 0.77 1 0.17			00.012			1		1	1			1 1		1	1	I	1	
Jill Krajewski 213 3701.1 AP Biology 22 45 24 2.71% 48.82 2.03 3 0.50 Andrew Verado 213 3701.2 AP Biology 23 45 24 2.71% 48.82 2.03 3 0.50 Michael Hirsh 108 3801.1 AP Physics 17 35 24 2.11% 37.97 1.58 2 0.34 Daniel Smalley 106 3801.2 AP Physics 18 35 24 1.02% 18.44 0.77 1 0.17																		
Andrew Verado 213 3701.2 AP Biology 23 24 16 16 17 17 17 35 24 2.11% 37.97 1.58 2 0.34 Michael Hirsh 108 3801.1 AP Physics 17 18 35 24 2.11% 37.97 1.58 2 0.34 Daniel Smalley 106 3801.2 AP Physics 18 17 17 24 1.02% 18.44 0.77 1 0.17 Annapurna Vakati 208 3901.1 AP Chemistry 17 17 17 24 1.02% 18.44 0.77 1 0.17	Jill Krajewski	213	3701.1	AP Biology	_					22	<u>. </u>	45	24	2.71%	48.82	2.03	3	0.50
Michael Hirsh 108 3801.1 AP Physics 17 35 24 2.11% 37.97 1.58 2 0.34 Daniel Smalley 106 3801.2 AP Physics 18 35 24 2.11% 37.97 1.58 2 0.34 Annapurna Vakati 208 3901.1 AP Chemistry 17 17 17 24 1.02% 18.44 0.77 1 0.17	Andrew Verado	213	3701.2	AP Biology			23									<u> </u>		
Daniel Smalley 106 3801.2 AP Physics 18 55 24 2.11% 57.97 1.58 2 0.34 Annapurna Vakati 208 3901.1 AP Chemistry 17 17 17 24 1.02% 18.44 0.77 1 0.17	Michael Hirsh	108	3801.1	AP Physics					17			25	24	7 110/	27 07	1 50	C	0.24
Annapurna Vakati 208 3901.1 AP Chemistry 17 17 24 1.02% 18.44 0.77 1 0.17	Daniel Smalley	106	3801.2	AP Physics					18			22	24	2.11%	57.57	1.20	2	0.54
Annapurna Vakati 208 3901.1 AP Chemistry 17 17 24 1.02% 18.44 0.77 1 0.17												47	24	4.000/	40.44	0.77		0.47
	Annapurna Vakati	208	3901.1	AP Chemistry						17	•	17	24	1.02%	18.44	0.77	1	0.17

SCIENCE DEPARTMENT SUB-TOTAL

87 15.00

Sarah Nichols	426	4101.1	World History Acc				16									
Sarah Nichols	426	4101.2	World History Acc					23								
Jennifer Nehill	418	4101.3	World History Acc	21												
Jennifer Nehill	404	4101.4	World History Acc			13										
Jennifer Nehill	404	4101.5	World History Acc						22							
Elaine Priovolos	401	4101.6	World History Acc	18						205	24	12.36%	222.42	9.27	10	1.68
Elaine Priovolos	401	4101.7	World History Acc			14										
Elaine Priovolos	406	4101.8	World History Acc					21								
Gabriel Swanger	418	4101.9	World History Acc	15												
Gabriel Swanger	418	4101.10	World History Acc		22											
Jesse Swanger	427	4101.11	World History Acc						20							
	1	1										1			1	1
Brad Walker	402	4102.1	World History Hon					24								
Sarah Nichols	426	4102.2	World History Hon	23												
Brad Walker	402	4102.3	World History Hon	24												
Moore Dodge	427	4102.4	World History Hon		22					176	24	10 61%	100 06	7 96	Q	1 3/
Rosemary Calland	418	4102.5	World History Hon			18				170	27	10.01/0	190.90	7.30	U	1.34
Kenneth Brooke	421	4102.6	World History Hon			18										
Moore Dodge	418	4102.7	World History Hon				23									
Rosemary Calland	418	4102.8	World History Hon						24							

Sarah Nichols	426	4103.1	World History	13								
Sarah Nichols	426	4103.2	World History	8		32	16	1.93%	34.72	2.17	3	0.50
Rosemary Calland	418	4103.3	World History		11							

Lorene Whyte	424	4201.1	World & Amer Acc				21								
Lorene Whyte	426	4201.2	World & Amer Acc					24							
Kenneth Brooke	421	4201.3	World & Amer Acc			23									
Kenneth Brooke	728A	4201.4	World & Amer Acc				19								
Paul Wexler	423	4201.5	World & Amer Acc	24											
Paul Wexler	423	4201.6	World & Amer Acc					23	244	24	14.71%	264.74	11.03	12	2.02
Brad Walker	402	4201.7	World & Amer Acc		24										
Brad Walker	402	4201.8	World & Amer Acc			23									
Adam Coggeshall	421	4201.9	World & Amer Acc	20											
Adam Coggeshall	421	4201 10	World & Amer Acc	24											
Adam Coggeshall	421	4201.11	World & Amer Acc				19								

			Day			Α			В			Section	Percentage of	Theoretical	Theoretical	Theoretical	Theoretical
			Period	1	2	3	4	5	6	7	Total Students Enrolled	Enrollment	Total	Students	Sections Needed Future	Sections Needed Future	Space Need Future
			Minutes, Monday - Thursday	90	90	80	50	50	90	90		Сар	Population	Enrolled, Future	(Decimal)	(Rounded)	@85%
			Minutes, Friday	65	70	85	50	50									
		Course		Ex	isting I	Numbe	er of St	udents	s Enrolle	ed							
Faculty Name	Room #	Number	Course Title	<16		16 t	:o 22		≥23	3							
Paul Wexler	423	4202.1	World & Amer Hon	<u> </u>		21											
Jennifer Nehill	404	4202.2	World & Amer Hon	<u> </u>		24					-						
Elaine Priovolos	401	4202.3	World & Amer Hon			23											
Paul Wexler	406	4202.4	World & Amer Hon				24				170	24	10.25%	184.45	7.69	8	1.34
Paul Wexler	423	4202.5	World & Amer Hon						14		1/0		10.23/0	104140	7.05	0	1.04
Jennifer Nehill	404	4202.6	World & Amer Hon						19								
Elaine Priovolos	401	4202.7	World & Amer Hon							21							
Andrew Ames	406	4202.8	World & Amer Hon							24							
				T													
Joseph Schotland	425	4203.1	World & Amer						10		25	16	1.51%	27.12	1.70	2	0.34
Brad Walker	406	4203.2	World & Amer	15													
Douglas Stanczak	401	4212 1	World Since 1945					27			27	28	1.63%	29.29	1.23	2	0.34
	401	1001.1		<u>الــــــــــــــــــــــــــــــــــــ</u>				_/									
Joseph Schotland Joseph Schotland	425	4301.1 4301.2	AP US History AP US History	<u> </u>			1/	16									
Douglas Stanczak	425	4301.3	AP US History	11							67	24	4.04%	72.69	3.03	4	0.67
Douglas Stanczak	425	4301.4	AP US History		23												
																	-
Moore Dodge	427	4302.1	US History Hon	15													1
Moore Dodge	427	4302.2	US History Hon	<u> </u>	21												
Douglas Stanczak	425	4302.3	US History Hon	<u> </u>		20					113	24	6.81%	122.60	5.11	6	1.01
Jesse Swanger	427	4302.4	US History Hon				13						0.01/0			Ū	
Jesse Swanger	427	4302.5	US History Hon					20									
Douglas Stanczak	401	4302.6	US History Hon						24								
				T							10	16	0.60%	10.95	0.69	1	0 17
Moore Dodge	427	4303.1	US History						10		10	10	0.00%	10.05	0.08	L	0.17
Melissa Barry	402	4311.1	US History Acc	24													
Melissa Barry	402	4311.2	US History Acc	+						21							
Jennifer Lemkin	429	4311.3	US History Acc	<u> </u>	24												
Jennifer Lemkin	428	4311.4	US History Acc	<u> </u>					22		200	24	12.000/	247.00	0.05	10	4 60
Andrew Ames	406	4311.5	US History Acc	<u> </u>	24						200	24	12.06%	217.00	9.05	10	1.68
Andrew Ames	406	4311.6	US History Acc	<u> </u>		21					-						
Andrew Ames	406	4311.7	US History Acc	<u> </u>				19			-						
Adam Coggeshell	423	4311.8	US History Acc	<u> </u>			24										
Adam Coggeshell	423	4311.9	US History Acc					21									L
AU: 5	120	4402.4			10												
Allisyn Furano	428	4402.1	Amer Legal System Hon	+	18						39	24	2.35%	42.31	1.77	2	0.34
Allisyn Furano	428	4402.2	Amer Legal System Hon	<u> </u>						21							
Joseph Schotland	404	4412.1	Economics Hon		26						40	20	2 000/	F2 00	2 1 7	2	0.50
Joseph Schotland	404	4412.2	Economics Hon	22							48	28	2.89%	52.08	2.17	3	0.50
	·						I				I						
Rosemary Calland	424	4421.1	AP Psychology	23	24												
Rosemary Calland	424 424	4421.2	AP Psychology AP Psychology		24	26					111	26	8 68%	156 24	6 51	7	1 1 2
Melissa Barry	424	4421.4	AP Psychology				24				744	20	0.00/0	130.24	0.51	/	1.10
Melissa Barry Stephen Plasko	424 424	4421.5 4421.6	AP Psychology AP Psychology	\vdash	-			22		25							1
				·	·	ı I	·	· · · · ·							1		
Allisyn Furano	428	4422.1	Psych/Socio Hon	20							38	24	2.29%	41.23	1.72	2	0.34
Allisyn Furano	428	4422.2	Psych/Socio Hon					18				- •	,			-	
				1							11	16	0 66%	11 02	0.75	1	0 17
Allisyn Furano	428	4423.1	Psych/Socio	<u> </u>	<u> </u>		11				**	10	0.00/0	11.33	0.75	<u> </u>	0.1/
Catherine Dowd	429	4441.1	AP US Government						24								
Catherine Dowd	429	4441.2	AP US Government	1						22							
Jennifer Lemkin	429	4441.3	AP US Government	24						_	117	24	7.05%	126.94	5.29	6	1.01
Jennifer Lemkin	429	4441 /	AP US Government				23										
Jennifer Lemkin	429	4441 5	AP US Government	1				24									1
Line Leman				+ +	·	ı	·				и — — — — — — — — — — — — — — — — — — —				1	ı.	
Andrew Ames	728	4462.1	AFR AM Studies & Contemp Issues Hon						30		30	30	1.81%	32.55	1.09	2	0.34

SOCIAL STUDIES DEPARTMENT SUB-TOTAL

89 15.00

			Day			Α			В		Section	Porcontago of	Theoretical	Theoretical	Theoretical	Theoretical
			Period	1	2	3	4	5	6 7	Total Students	Enrollment	Total	Students	Sections	Sections	Space Need
			Minutes, Monday - Thursday	90	90	80	50	50	90 90	Linolied	Сар	Population	Enrolled, Future	(Decimal)	(Rounded)	@85%
			Minutes, Friday	65	70	85	50	50								
		6		Ex	isting	Number	of Stu	dents E	Inrolled							
Faculty Name	Room #	Course Number	Course Title	<16		16 to	22		≥23							
Wendy Hodge	907	7010.1	Art 1				19									
Linda Burke	901	7010.2	Art 1				15				~	4 000/	07.00	2 67		0.67
Linda Burke	901	7010 3	Art 1					23		81	24	4.88%	87.88	3.67	4	0.67
Linda Burke	901	7010.4	Art 1	-					24							
	501	7010.4	AILI						27							
Shireen Yadollahpour Shireen Yadollahpour	909 909	7022.1 7022.2	Art 2 Hon Art 2 Hon				19		19	38	20	2.29%	41.23	2.07	3	0.50
· ·	1															
Shireen Yadollahpour	909	7031.1	AP Art 3 Portfolio	<u> </u>					14	21	14	1.27%	22.78	1.63	2	0.34
Linda Burke	901	7031.2	AP Art 3 Portfolio			7						,,,				0.01
										10	20	0.000/	17.20	0.07	1	0.17
Shireen Yadollahpour	909	7041.1	Art 3 Acc	16						10	20	0.96%	17.30	0.87	L	0.17
Landa Ruen	807	7100 1	Coramics 1	21												
Landa Ruen	807	7100.1	Ceramics 1		21					-						
	807	7100.2			21					86	22	5.18%	93.31	3.89	4	0.67
Landa Ruen	807	7100.3	Ceramics 1			22										
Landa Ruen	807	7100.4	Ceramics 1						22							
Landa Ruen	807	7105.1	Ceramics 2					15				• • • • • •			_	
Landa Ruen	807	7105.2	Ceramics 2	-					21	- 36	22	2.17%	39.06	1.63	2	0.34
	807	7105.2							21							
Damon Burnard	903	7120.1	Crafts 1						22							
Wendy Hodge	907	7120.3	Crafts 1			21				66	22	3.98%	71.61	2.99	3	0.50
Wendy Hodge	907	7120.4	Crafts 1						23							
Domon Burnard	002	7120 1	Drawing & Dainting 1		24											
Damon Burnard	903	7128.1	Drawing & Painting 1 Drawing & Painting 1		24	24				72	24	4.34%	78.12	3.26	4	0.67
Damon Burnard	903	7128.3	Drawing & Painting 1					24								
Shireen Yadollahnour	909	7136 1	Drawing & Painting 2			13				13	24	0.78%	14.10	0.59	1	0.17
Shireen radonanpour	505	7150.1								_			_			_
Wendy Hodge	907	7141.1	Art SR Studio Acc	_	11					26	16	1 57%	28 21	1 77	2	0 3/
Wendy Hodge	907	7141.2	Art SR Studio Acc						15	20	10	1.37/0	20.21	1.//	2	0.54
Jon zucchi	601	7157.2	Digital Art & Design Animation					18		_						
Elizabeth Palmer	601	7157.4	Digital Art & Design Animation	20						_						
Elizabeth Palmer	601	7157.5	Digital Art & Design Animation		20					98	20	5.91%	106.33	5.32	6	1.01
Elizabeth Palmer	601	7157.6	Digital Art & Design Animation	_					20	_						
Elizabeth Palmer	601	7157.7	Digital Art & Design Animation			20										
										10	10	0.000/	47.20	1 00	2	0.24
Linda Burke	901	7158.2	Intro to Sculpture	16						16	16	0.96%	17.36	1.09	2	0.34
Elizabeth Balmor	800	7170 1	Dhoto 1					16								
Katherine Laberge	809	7170.2	Photo 1	16				10		71	20	4.28%	77.03	3.86	4	0.67
Katherine Laberge Katherine Laberge	809 809	7170.3 7170.4	Photo 1 Photo 1						20 19							
		7475.4		 												
Katherine Laberge	809	7175.1	Photo 2 Photo 2	+		14	11			25	20	1.51%	27.12	1.36	2	0.34
										_						
Robyn Briggs	605	7248.1	Commercial Design & Production			5				5	10	0.30%	5.42	0.55	1	0.17
Dahus Dain	605	7200 4	Cranhic Design 1				10									
KODYN Briggs	605	7280.1		+			19	22		59	20	3 56%	64 01	2 21	Δ	0 67
Robyn Briggs	605	7280.2	Graphic Design 1	+				20			20	5.50/0	07.01	J.21	-	0.07
Robyn Briggs	605	7280.3	Graphic Design 1						20							
Robyn Briggs	605	7290.1	Graphic Design 2	4						4	20	0.24%	4.34	0.22	1	0.17

FINE ARTS DEPARTMENT SUB-TOTAL

46 8.00

Margaret McLallen	616	8011.1	Symphonic Band Acc	16				5/	65	2 25%	58 59	0.91	1	0 17
Margaret McLallen	616	8029.1	Symphonic Band	38				74	05	5.25/0	J0.JJ	0.51	-	0.17
Margaret McLallen	616	8020.1	Concert Band			42		42	65	2.53%	45.57	0.71	1	0.17
									T					1
Jonathan Vanderwoude	612	8051.1	Concert Chorale Acc				14	28	70	1 69%	30 38	0 44	1	0 17
Jonathan Vanderwoude	612	8074.1	Concert Chorale				14	20	70	1.0570	30.30	0.44	-	0.17
Jonathan Vanderwoude	612	8060.1	String Orchestra	23				26	50	2 17%	20.06	0 70	1	0 17
Jonathan Vanderwoude	612	8061.1	String Orchestra Acc	13				30	50	2.17/0	39.00	0.75	Ŧ	0.17
Margaret McLallen	614	8070.1	Music Theory 1		10			10	16	0.60%	10.85	0.68	1	0.17
Jonathan Vanderwoude	612	8079.1	Women's Chorus		17			19	65	1 15%	20 61	0 32	1	0 17
Jonathan Vanderwoude	612	8091.1	Women's Chorus Acc		2			19	05	1.13/0	20.01	0.52	1	0.17

			Day			Α				В		Castion	Deveentege of	Theoretical	Theoretical	Theoretical	Theoretical
			Period Minutes, Monday - Thursday Minutes, Friday	1 90 65	2 90 70	3 80 85	4 50 50	50 50	6 90	7 90	Total Students Enrolled	Section Enrollment Cap	Percentage of Total Population	Students Enrolled, Future	Sections Needed Future (Decimal)	Sections Needed Future (Rounded)	Space Need Future @85%
				Ex	isting	Numbe	er of St	tudent	s Enrol	lled							
Faculty Name	Room #	Course Number	Course Title	<16		16 t	to 22		2	23							
Jonathan Vanderwoude	612	8080.1	Chorus		28						30	65	1.81%	32.55	0.51	1	0.17
Jonathan Vanderwoude	612	8081.1	Chorus Acc		2								,	01.00	0.01	_	
Jonah LeDoux	Auditorium	8100.1	Technical Theater		7						7	20	0.42%	7.59	0.38	1	0.17
Margaret McLallen	614	8110.1	Music by Comp 1		16						16	16	0.96%	17.36	1.09	2	0.34
Jon Zucchi	616	8125.1	Guitar Class 1				15				15	16	0.90%	16.27	1.02	1	0.17
Jonah LeDoux	Auditorium	8150.1	Theater Arts 1			19					19	25	1.15%	20.61	0.83	1	0.17
PE	RFOR	MING A	RTS DEPARTMENT	r sui	B-T	ΟΤ	AL									12	3.00

PERFORMING ARTS DEPARTMENT SUB-TOTAL

Natalie Guthrie	409a	8490.1	TV Communications 1	15		30	15	1.81%	32.55	2.17	3	0.50
Natalie Guthrie	409a	8490.2	TV Communications 1	1	15							
Natalie Guthrie	409a	8495.1	TV Communications 2	8		8	15	0.48%	8.68	0.58	1	0.17
Samantha Bookston	409	8497.1	News & The Web	11		11	15	0.66%	11.93	0.80	1	0.17

VOCATIONS & TECHNOLOGY SUB-TOTAL

Denise Domnarski	611	8615.1	Wellness 10	25									
Denise Domnarski	611	8615.2	Wellness 10	26									
Denise Domnarski	611	8615.3	Wellness 10		25								
Denise Domnarski	611	8615.4	Wellness 10			29							
Denise Domnarski	611	8615.5	Wellness 10				24						
Timothy Walsh	611	8615.6	Wellness 10	17									
Timothy Walsh	611	8615.7	Wellness 10	26									
Timothy Walsh	611	8615.8	Wellness 10		26								
Timothy Walsh	611	8615.9	Wellness 10				24						
Glen Hopkins	611	8615.10	Wellness 10	25			445	26	26.82%	482.82	20.12	21	3.53
Glen Hopkins	611	8615.11	Wellness 10	17									
Glen Hopkins	611	8615.12	Wellness 10		27								
Glen Hopkins	611	8615.13	Wellness 10		26								
Glen Hopkins	611	8615.14	Wellness 10			16							
James Nix	611	8615.15	Wellness 10	26									
James Nix	611	8615.16	Wellness 10	19									
James Nix	611	8615.17	Wellness 10	26									
James Nix	611	8615.18	Wellness 10		25								
James Nix	611	8615.19	Wellness 10			16							
		1	1				1						1
Aaron Dungca	613	8635.1	Wellness 12	19									
Aaron Dungca	613	8635.2	Wellness 12	18									
Asses Durges	612	0005.0											
Aaron Dungca	613	8635.3	Wellness 12	26									
Aaron Dungca	613	8635.4	Wellness 12		20								
Aaron Dungca	613	8635.5	Wellness 12			18							
Timothy Walsh	613	8635.6	Wellness 12			15							
Eric Chase	613	8635.7	Wellness 12	19									
Eria Chasa	612	9625.9	Wellness 12										
Eric Chase	613	8035.8	weiness 12	20									
Eric Chase	613	8635.9	Wellness 12		26				22 606	400.00		4.0	
Eric Chase	613	8635.10	Wellness 12		22		393	26	23.69%	426.40	17.77	18	3.03
Eric Chase	613	8635.11	Wellness 12				25						
Diana Parkhurst	613	8635.12	Wellness 12	19									
Diana Parkhurst	610	0625 12	Wollnoss 12										
	613	0035.13	weilness 12				_						
Diana Parkhurst	613	8635.14	Wellness 12		19		_						
Diana Parkhurst	613	8635.15	Wellness 12			14							
Diana Parkhurst	613	8635.16	Wellness 12				26						
Deborah Gorman	613	8635.17	Wellness 12	16									
Deborah Gorman	612	8635 19	Wellness 12	15									
	013	0033.10	weilliess 12										
Deborah Gorman	613	8635.19	Wellness 12				24						

6 1.00

Health & PE DEPARTMENT SUB-TOTAL

7.00 39

TEACHING STATION GRAND TOTALS

557 97.00

Non-Teaching Station Spaces

Laura Brinkmann	722	8809.2	Study/Seminar 9			29										
Elizabeth Brown	721	8809.3	Study/Seminar 9						25							
Kathryn Clayton	701	8809.4	Study/Seminar 9					18								
Stephen Koup	702	8809.5	Study/Seminar 9						21							
Elizabeth Cox	721	8809.6	Study/Seminar 9	19												
Katherine Fanous	711	8809.7	Study/Seminar 9	19												
Chistopher Farnsworth	730	8809.8	Study/Seminar 9		21											
Robert Flaggert	720	8809.9	Study/Seminar 9					18		340	25	20.49%	368.90	14.76	15	2.52
Elizabeth Weidner	732	8809.10	Study/Seminar 9			29										
Brian Herrmann	730	8809.11	Study/Seminar 9					3	0							
Jonathan Cooke	720	8809.13	Study/Seminar 9		20											
Katherine Maffei	730	8809.15	Study/Seminar 9				12									
Douglas Kopcsp	720	8809.19	Study/Seminar 9	19												
Karl Hekler	728B	8809.20	Study/Seminar 9			30										
Theresa Levy	716	8809.21	Study/Seminar 9					3	0							

Keith Ford	Library	8819.1294	Directed Study 10 gr	6											
Keith Ford	Library	8819.1295	Directed Study 10 gr		5										
Alison Borrelli	728	8819.1296	Directed Study 10 gr		3	31			07	20		105 24	2 76	4	0.67
Meridith Welch	728	8819.1297	Directed Study 10 gr			24			57	20	5.65/0	105.24	5.70	4	0.07
Katherine Laberge	728	8819.1298	Directed Study 10 gr				28								
Keith Ford	Library	8819.1299	Directed Study 10 gr					3]						

-		1					1 1						
High School Staff	Cafeteria	90162.1431	Directed Study 11/12 Gr	29									
High School Staff	Cafeteria	90162.1432	Directed Study 11/12 Gr		38								
High School Staff	Cafeteria	90162.1433	Directed Study 11/12 Gr			33							
High School Staff	Cafeteria	90162.1434	Directed Study 11/12 Gr			46							
High School Staff	Cafeteria	90162.1435	Directed Study 11/12 Gr			28							
High School Staff	Cafeteria	90162.1436	Directed Study 11/12 Gr			49							
High School Staff	Cafeteria	90162.1437	Directed Study 11/12 Gr				53 574	150	34 60%	622 78	4 16	5	0 84
High School Staff	Cafeteria	90162.1438	Directed Study 11/12 Gr	37			5/4	150	34.0070	022.70	4.10	5	0.04
High School Staff	Cafeteria	90162.1439	Directed Study 11/12 Gr		26								
High School Staff	Cafeteria	90162.1440	Directed Study 11/12 Gr			26							
High School Staff	Cafeteria	90162.1441	Directed Study 11/12 Gr			61							
High School Staff	Cafeteria	90162.1442	Directed Study 11/12 Gr			50							
High School Staff	Cafeteria	90162.1443	Directed Study 11/12 Gr			31							
High School Staff	Cafeteria	90162.1444	Directed Study 11/12 Gr				67						
			· · · · · ·										
Andrew Bradley	808	9105.1	English 12P	3									
Andrew Bradley	808	9106.1	Science 12P	'	4								
Andrew Bradley	808	9107.1	Math 12P	'		4	27	6	1 63%	20 20	1 80	5	0.84
Andrew Bradley	808	9108.1	History 12P	_		4	21	0	1.05%	29.29	4.03	5	0.04
Andrew Bradley	808	9109.1	Wellness 12P			4							
Andrew Bradley	808	9113.1	Art 12P			4							
Andrew Bradley	808	9114.1	Community Experience 12P				4						
										1			1
Michele Kelly	803	9465 1	Foundations of English 10		7		7	6	0.42%	7.59	1.27	2	0.34
WICHER KENY	803	9405.1			/			-	•••••		/		
Jessica Davis	910	9466.1	Foundations of Alg & Geo			3	3	8	0.18%	3.25	0.41	1	0.17
			ŭ				1	6	0 240/	1 24	0 72	1	0 1 7
Michele Kelly	803	9475.1	Foundations of English 11	4			4	D	0.24%	4.54	0.75	L	0.17
In color Davis	010	0476.4				0	9	8	0.54%	9.76	1.23	2	0.34
Jessica Davis	910	9476.1	Foundations of Aig & Geo 2			9	J	0	0.04/0	5.70	1.25	-	0.04
				_									
Anthony Principe	706	9509.1	PLC 4 CR	8									
Casev Palmer	706	9509.1	PLC 4 CR	_			10						
Anthony Principe	706	9509.2	PLC 4 CR		9								
Anthony Principe	706	9509.3	PLC 4 CR			10							
Anthony Principe	706	9509.4	PLC 4 CR			10	99	10	5 97%	107 41	10 75	11	1 85
Anthony Principe	706	9509.5	PLC 4 CR				10	10	3.5770	107.41	10.75		1.05
Casey Palmer	706	9509.6	PLC 4 CR	10									
Casey Palmer	706	9509.7	PLC 4 CR			10							
Casey Palmer	706	9509.8	PLC 4 CR			11							
		-								1			1

Casey Palmer	706	9509.8	PLC 4 CR				11								
Casey Palmer	706	9509.9	PLC 4 CR					11							
Anthony Principe	706	9519.1	PLC 2 CR	3											
Casey Palmer	706	9519.11	PLC 2 CR	1											
Casey Palmer	706	9519.12	PLC 2 CR			3									
Casey Palmer	706	9519.13	PLC 2 CR				1								
Casey Palmer	706	9519.14	PLC 2 CR					2	20	2	1 210/	21 70	10.05	11	1 05
Casey Palmer	706	9519.15	PLC 2 CR					2	20	2	1.2170	21.70	10.02	11	1.05
Anthony Principe	706	9519.2	PLC 2 CR		2										
Anthony Principe	706	9519.3	PLC 2 CR				2								
Anthony Principe	706	9519.4	PLC 2 CR					2]						
Anthony Principe	706	9519.5	PLC 2 CR					2							
, ,															

Lauren DellaCagna	802	9608.1	Skills Center All Grades						5							
Lauren DellaCagna	802	9608.2	Skills Center All Grades			3										
Lauren DellaCagna	802	9608.3	Skills Center All Grades					5		25	-	4 540/	27.42	F 42	6	4.04
Marina Meliones	802	9608.4	Skills Center All Grades		4					25	5	1.51%	27.12	5.43	6	1.01
Marina Meliones	810	9608.5	Skills Center All Grades			2										
Marina Meliones	802	9608.6	Skills Center All Grades				3									
Marina Meliones	802	9608.7	Skills Center All Grades					3								
				÷										· · · · · ·		

			Day			Α			В			.		-	Theoretical	Theoretical	Theoretical
			Period	1	2	3	4	5	6	7	Total Students	Section Enrollment	Percentage of Total	Theoretical Students	Sections	Sections	Space Need
			Minutes, Monday - Thursday	90	90	80	50	50	90	9 0	Enrolled	Сар	Population	Enrolled, Future	(Decimal)	(Rounded)	Future @85%
			Minutes, Friday	65	70	85	50	50	50	50					. ,	. ,	-
				Fx	isting I	Numbe	er of Sti	udents	Fnrolle	-d							
		Course															
Faculty Name	Room #	Number	Course Title	<16		16 t	o 22		≥23	3				1			
David O'Neil	810	9609.1	Skills Center 9	5				2			-						
Jamie Reynolds	902	9609.10	Skills Center 9	_				3	3		-						
Jamie Reynolds	902	9609.11	Skills Center 9						5	3							
Margo Fisher-Martin	411	9609.13	Skills Center 9		4												
Jessica Davis	910	9609.14	Skills Center 9	5							-						
David O'Neil	810	9609.2	Skills Center 9		4						62	F	2 000/	60.25	12 60	14	2.25
David O'Neil	810	9609.3	Skills Center 9					4			05	5	5.00%	00.35	13.00	14	2.35
Elizabeth Cushing	902	9609.4	Skills Center 9					6			-						
Elizabeth Cushing	902	9609.5	Skills Center 9	_					5		-						
Elizabeth Cushing	902	9609.6	Skills Center 9	5	_						-						
Jenna Dowling	910	9609.7	Skills Center 9	_	5	6					-						
Jenna Dowling	910	9609.8	Skills Center 9			6				5							
Jenna Downing	510	3003.3	Skills Center 5							5							
Margo Fisher-Martin	411	9635.10	Skills Center 10	7													
Jessica Davis	910	9635.1	Skills Center 10		3						-						
Margo Fisher-Martin	411	9635.11	Skills Center 10						5		-						
Margo Fisher-Martin	411	9635.12	Skills Center 10					5									
Jessica Davis	910	9635.2	Skills Center 10					7			-						
Jessica Davis	910	9635.3	Skills Center 10						4		54	6	3.25%	58.59	9.77	10	1.68
Fran Karp	411	9635.4	Skills Center 10		4						-						
Fran Karp	411	9635.5	Skills Center 10				5				-						
David O'Neil	810	9635.6	Skills Center 10				3				-						
Jamie Reynolds	902	9635.8	Skills Center 10		6	_					-						
Jamie Reynolds	902	9635.9	Skills Center 10			5											
Fran Karn	411	9636 1	Skills Center 11	4													
Sherene Michlin	708	9636.1	Skills Center 11						3		-						
Sherene Michlin	708	9636.11	Skills Center 11							5							
Fran Karp	411	9636.2	Skills Center 11							5							
Jeanette Word	710	9636.3	Skills Center 11	5													
Jeanette Word	710	9636.4	Skills Center 11		6						51	5	3.07%	55.33	11.07	12	2.02
Ruth O'Shea	708	9636.5	Skills Center 11	3													
Ruth O'Shea	708	9636.6	Skills Center 11				4				-						
Sherene Michlin	708	9636.7	Skills Center 11		5						-						
Sherene Michlin	708	9636.8	Skills Center 11			6					-						
Sherene Michlin	708	9636.9	Skills Center 11				5										
Elizabeth Cushing	902	9627 1	Skills Conter 12		6						1					1	
Ruth O'Shea	902 708	9637.1	Skills Center 12		7						-						
Ruth O'Shea	708	9637.2	Skills Center 12					7			-						
Jeanette Word	710	9637.4	Skills Center 12				6				40	5	2.41%	43.40	8.68	9	1.51
Jeanette Word	710	9637.5	Skills Center 12					6			0	5	2.41/0	-3.40	0.00	5	1.31
Jeanette Word	710	9637.6	Skills Center 12							2							
David O'Neil	810	9637.7	Skills Center 12							6							
	1																
Michele Kelly	803	0628 1	Foundations Skills 10						6		10	1 5	0.00/	10.05	0 72	1	0 17
Michele Kelly	803	9639.1	Foundations Skills 10					Δ	0		10	15	0.60%	10.85	0.73	L	0.17
Wheneve Keny	005	5055.1				1		-									
Katherine Brady	805	9737.1	Cap Skills	3							-						
Katherine Brady	805	9737.2	Cap Skills		6						19	6	1 15%	20.61	3 44	4	0.67
Katherine Brady	805	9737.3	Cap Skills			3		2			15	Ū	1.13/0	20.01	3.44	-	0.07
Katherine Brady	805	9/3/.4	Cap Skills	_				3	4		-						
Katilelille Blauy	605	9737.5	Cap Skills						4								
	000	0755.4	c		1		2				2	F	0 1 29/	2 1 7	0.44	1	0 17
Michele Kelly	803	9755.1	Strive Eng				2				2		0.12%	2.17	0.44	1	0.17
Ilene Asarch	707A	9756.1	Strive Math	_	2						2	5	0.12%	2.1/	0.44	1	0.17
Lauren DellaCagna	802	9757.1	Strive Sci	2							2	5	0.12%	2.17	0.44	1	0.17
Ilene Asarch	707A	9759.1	Strive Skills						2		2	5	0.12%	2.17	0.44	1	0.17
llene Asarch	7074	9760 1	Strive Vocational					2			2	5	0 12%	2 17	0 44	1	0.17
nene Asdrun	707A	9700.1		+-				2		-	<u> </u>	15	0.12/0	6 51	0 4 4	1	0.17
llene Asarch	707A	9770.1	Lite Skills							6	Ø	12	0.30%	0.51	0.44	L	U.1/
Linda Maria Lannon	2055	0020 1	FLL Advanced English	2							2	10	0 1 00/	2 25	0.22	1	0 17
	2035	0300.1	LLE Auvanceu Eligiisii	3		I					3	13	0.10%	3.23	0.22	L _	U.1/
Linda Marie Lannon	205F	0995.1	ELL Support		8						8	15	0.48%	8.68	0.58	1	0.17
							ı I		ı I.		U U	1.5	VITU/U	5.00	0.00	•	VII/
Scott Kelly	715	8160.1	Ind Study English 2 CR	1							2	15	0 1 30/	2 1 7	015	1	0 17
Robert Flaggert	726	8160.2	Ind Study English 2 CR				1				2	12	0.12%	2.1/	0.15	L	0.1/
									·		<u>_</u>						
Samantha Bookston	409	8455.1	Tech Leaders	0	-												

Samanuna Brookston	205	0433.2	Tech Leduers	0												
Samantha Bookston	409	8455.3	Tech Leaders		0											
Samantha Bookston	409	8455.4	Tech Leaders			0				3	15	0.18%	3.25	0.22	1	0.17
Samantha Bookston	409	8455.5	Tech Leaders				1									
Samantha Bookston	409	8455.6	Tech Leaders					1								
Samantha Bookston	409	8455.7	Tech Leaders						1							

Potential Solution Strategies

D&W's process to determine future spatial needs revealed that existing spatial needs will be exacerbated as the enrollment reaches the target of 1800 students. Physically adding more instructional spaces is only one potential solution to address those needs. D&W also explored the following other potential strategies.

More Students Per Section

The strategy attempts to absorb future increases in enrollment by increasing the number of students in each section. Three key factors limit the effectiveness of this strategy. First, the high school's administrative and departmental leadership currently cap certain courses at numbers well below the 23 students per classroom guideline defined by the MSBA. In order to increase the building's capacity by leveraging this strategy, it would be necessary to raise or eliminate those caps, which are in the best interests of students. Second, you could raise the number of students in each section where caps are already high. In order to execute this strategy, courses that currently serve 23 students would need to serve 25 or 26. Courses that serve 28 would need to serve 30 or more. Courses without low section caps already have the highest students per classroom averages. Raising them even higher would compromise the student experience and only further limit teachers' instructional activities due to the physical size of classrooms. Finally, you could raise the number of students per section in the Fine & Performing Arts Department and potentially in the Health & Physical Education department. Doing so may increase the efficient use of those spaces, but those spaces tend to be designed for specialty curriculums and less adaptable to the core academic disciplines where the need tends to be greatest. It would be difficult, for example, to deliver the Spanish curriculum in an Art classroom. In addition, increasing the number of students in each section for these departments would result in fewer sections of each course offered. While that would increase efficiency and capacity, it would also result in fewer students having access to those specialized courses. Certain courses are only offered in one or two sections. If the number of sections offered in the Fine & Performing Arts were reduced, it may limit students' ability to enroll because of scheduling conflicts.

Higher Utilization Rates

The strategy attempts to absorb future increases in enrollment by increasing the utilization rates - by using spaces more periods per cycle than is currently occurring. High utilization rates require faculty members to share space and/or for teachers to occupy more than one room per day. It is a circumstance that makes it challenging for students to find teachers when they need assistance. It also makes it more critical to have Departmental offices as landing places for teachers who are displaced from their rooms during their preparation periods. Two key factors limit the effectiveness of this strategy. First, there are limited opportunities to raise utilization rates. The overall building is averaging 84% utilization, just one percent below the common benchmark. Spaces serving the Core Academic disciplines are averaging over 90% utilization. In order to implement this strategy, it would be necessary to increase utilization rates for under-utilized spaces. Unfortunately, only the Fine & Performing Arts spaces are under-utilized. It is impractical, for example, to improve the utilization of the Auditorium or the Midi Lab or the Television studio because of their specialized nature. Second, even when opportunities do exist to increase utilization - in the Fine Arts (Art Rooms), for example – their curriculum-specific design characteristics and geographic location make them impractical for other disciplines. Even though Art shares similarities with Science, it would be extremely challenging to deliver Biology curriculum in an Art room. Similarly, even if this type of sharing were practical, doing so would result in fewer sections of Fine Arts courses being offered, which would limit students' access to these courses.

Conversion of Non-instructional Spaces to Classrooms

The strategy attempts to absorb future increases in enrollment by repurposing non-instructional spaces into classrooms and labs – by taking storage closets and faculty spaces and renovating them into learning environments. This has proven a reasonably effect strategy to date. The District and the high school administrations have already repurposed a number of these types of spaces, often sacrificing the effectiveness or availability of faculty and storage spaces to do so. Repurposing more departmental office space or carving out additional classroom space from the Library/Media Center would only exacerbate sacrifices already made. Students would likely find it even more challenging to find faculty and staff members when they are displaced from their classrooms. Collaboration features and number of volumes may have to be reduced to repurpose the Library/Media Center. While limited opportunities to repurpose existing space still exist, members of the Working Group expressed an interest in strategies that restore repurposed space – not those that require more sacrifices.

Construction

The strategy attempts to absorb future increases in enrollment by constructing additional square footage. Such a strategy could relieve some of the over-crowding and over-utilization currently being experienced and anticipate needs necessary to serve the target enrollment in the future. D&W's options, as described in the next section, focus on this strategy.

Consequences of Doing Nothing

Needham High School could attempt to absorb the projected target enrollment without executing any of the strategies defined above. D&W calculated the impact to the average number of students per section and to utilization rates should the District choose to do nothing. In order to perform these calculations, only one variable can be considered at a time.

In the first set of calculations, D&W allowed the number of sections and utilization rates to remain the same as currently offered. D&W then calculated how many students would be in each section. In general terms, every section would experience an increase of 8.5%. This would make it necessary to eliminate or increase caps on courses. It would result in many Core Academic courses having many sections with more than 30 students enrolled. The tables on the following two pages illustrate these calculations.

In a second set of calculations, D&W allowed the number of students per section to be fixed at either the existing section cap or 24 students, which ever was lower and calculated a total number of sections needed. To determine the impact to utilization, D&W divided the total number of projected sections by the total sections available within the existing classrooms. For the Core Academic Disciplines, the consequence of doing nothing results in an average utilization rate of 97%. Or expressed another way, 41 of 52 classrooms would be occupied by students every period of every day – 353 of 364 total sections would be occupied.

Number of Students Per Section : 2024-25

Revised - 02.09.17

	Day			Α			I		
	Period	1	2	3	4	5	6	7	Total Minutes Per
	Minutes. Monday - Thursday	90	90	80	50	50	90	90	Cycle
	Minutes, Friday								2480
			I	Existing Num	nber of Stud	ents Enrolle	d		
		<16		16 t	o 22		>	73	Average Students
Room #	Course Title	10		101			_		Per Period
704		22	20	27	22	20	27	42	22.00
701	General Classroom - English	22	29	27	22	20	27	13	22.80
702	General Classroom English	12	22	20	25	25	20	25	20.00
713	General Classroom - English	23	23	23	11	0	27	25	23.00
719	General Classroom - English	28	27	28	29	0	13	20	22.50
720	General Classroom - English	21	22	16	30	20	27	27	23.29
721	General Classroom - English	21	30	27	27	23	18	27	24.71
722	General Classroom - English	25	21	31	22	16	29	26	24.29
723	General Classroom - English	22	0	21	29	22	23	29	24.33
724	General Classroom - English	24	27	27	29	14	30	30	25.86
726	General Classroom - English	22	24	25	27	29	21	24	24.57
728	Interdisciplanary Room*	30	30	34	26	30	33	0	30.50
730	General Classroom - English	24	23	27	13	25	33	30	25.00
732	General Classroom - English	13	9	31	22	27	28	23	21.86
	English Department Sub-total	ls							24.47
									_
109	General Classroom - Math	23	25	25	16	24	0	26	23.17
112	General Classroom - Math	26	18	0	23	25	26	0	23.60
201	General Classroom - Math	27	26	25	27	25	17	22	24.14
202	General Classroom - Math	25	18	12	25	18	20	25	20.43
203	General Classroom - Math	21	22	25	20	21	0	18	21.17
204	General Classroom - Math	0	18	18	26	26	18	25	21.83
206	General Classroom - Math	23	21	24	18	26	26	16	22.00
211	General Classroom - Math*	27	24	25	15	14	15	27	21.00
212	General Classroom - Math	21	25	27	21	28	26	0	24.67
214	General Classroom - Math	27	29	27	26	26	27	23	26.43
216	General Classroom - Math	25	20	17	28	16	25	25	22.29
221	General Classroom - Math	12	10	15	17	22	21	14	18.57
225		12	24	25	12	21	25	14	19.00
	Math Department Sub-totals	5							22.19
		-							
401	General Classroom - Social Studies	0	20	25	15	29	26	23	23.00
402	General Classroom - Social Studies	26	26	0	26	25	26	23	25.33
404	General Classroom - Social Studies	24	28	26	14	0	21	24	22.83
406	General Classroom - Social Studies	16	26	23	26	21	23	26	23.00
418	General Classroom - Social Studies	16	23	24	20	25	12	26	20.86
421	General Classroom - Social Studies	22	20	22	20	25	15	0	22.00
423	General Classroom - Social Studies	20	26	20	20	23	22	25	25.00
424	General Classroom - Social Studies	12	20	20	12	17	11	0	25.57
425	General Classroom - Social Studies	25	14	0	9	17	25	26	19.33
427	General Classroom - Social Studies	16	23	24	14	22	11	22	18.86
429	General Classroom - Social Studies	22	20	0	12	20	24	23	20.17
429	General Classroom - Social Studies	26	26	0	25	26	26	24	25.50
728B	Social Studies*	0	0	33	0	0	21	0	27.00

Social Studies Department Sub-totals

414	General Classroom - French	12	0	24	17	20	0	23	19.20
415	General Classroom - Latin	27	20	2 8	29	26	25	22	25.29
416	General Classroom - French	18	15	23	23	15	17	0	18.50
417	General Classroom - Latin	24	22	29	17	20	0	24	22.67
419	General Classroom - Chinese	13	0	2 6	12	17	0	27	19.00
707	General Classroom - Spanish	16	21	0	15	20	15	0	17.40
709	General Classroom - Spanish	22	28	0	26	26	0	24	25.20
711	General Classroom - Spanish	21	22	20	22	17	22	26	21.43
712	General Classroom - Spanish	17	21	23	12	25	17	0	19.17
713	General Classroom - Spanish	27	14	0	25	23	2 6	26	23.50
714	General Classroom - Spanish	0	27	21	27	14	26	28	23.83
716	General Classroom - Spanish	11	20	0	26	14	33	15	19.83
World	Languages Department Sub	-totals							21.37

Core Academic Sub-totals

22.67

22.24

Number of Students Per Section : 2024-25

Revised - 02.09.17

	Day			Α					
	Period	1	2	3	4	5	6	7	Total Minutes Per Cycle
	Minutes, Monday - Thursday Minutes. Friday	90	90	80	50	50	90	90	2480
	······			Existing Nun	nber of Stud	ents Enrolle	d		
Room #	Course Title	<16		16 t	o 22		≥	23	Average Students Per Period
101	Engineering Lab	10	2	0	0	26	26	26	18.00
102	Physics Lab	23	20	24	21	26	18	18	21.43
103	Physics Lab	20	20	25	0	23	25	17	21.67
104	Physics Lab	20	16	24	21	23	13	17	19.14
106	Physics Lab*	21	26	13	21	20	20	0	20.17
108	Physics/Bio Lab	24	21	12	16	18	18	18	18.14
110	Biology Lab	25	20	25	0	26	26	22	24.00
207	Chemistry Lab	20	22	23	24	22	25	24	22.86
208	Chemistry Lab	12	22	17	24	0	18	18	18.50
209	Chemistry Lab	16	23	21	20	21	22	25	21.14
210	Chemistry Lab	16	0	17	25	24	26	13	20.17
213	Biology Lab	0	25	25	14	0	24	24	22.40
215	Biology Lab	15	0	13	15	21	26	17	17.83
217	Biology Lab	0	26	26	15	17	23	20	21.17
219	Biology Lab	17	22	24	25	0	22	18	21.33
	Science Department Sub-	totals							20.54
601	Art	22	22	22	0	20	22	0	21.60
605	Art	4	0	5	21	22	0	22	14.80
807	Art - Ceramics	23	23	24	0	16	23	24	22.17
809	Art - Photogrpahy	17	0	15	12	17	22	21	17.33
901	Art	17	0	8	16	25	0	26	18.40
903	Art	0	26	26	0	26	24	0	25.50
907	Art	0	12	23	21	0	16	25	19.40
909	Art	17	0	14	21	0	21	15	17.60
Fine	e Arts Department Sub-to	otals							17.88
612	Chowy Doom	20	22	•	21	0	0	20	30.75
612	Midi Lab	 	55 17	0	21	0	0	50	30.75
614	Rand Room	0	/ 	0	11	0	0	0	14.00
Auditorium	Auditorium - Excluded	0	8	21	0	40	0	0	11 50
Perfor	ming Arts Department Sul	b-totals	U	<u> </u>	U	0	0		24.50
	0								
409	Multi-media Lab	0	12	0	0	1	1	1	3.75
409a	TV Studio	9	16	16	0	0	0	0	13.67
	Fine & Performing Arts Se	ub-totals	5						18.90
611	Gum - B	02	5.0	05	25	.55	66	52	22.00
613	Gym - D Gym - A	59	56	85	28	66	51	81	20.29
		Cult	1						24.64
	Health & PE Department	Sub-tota	IIS						21.64

GRAND TOTALS

Key Findings

Needham High School Requires a total of 97 Teaching Stations to serve the target population of 1800 9th-12th students. Additional teaching stations in the Core Academic disciplines and Science will relieve the existing over-crowding conditions and position the facility to absorb the increased enrollment expected in the future. These additional teaching stations will also allow the facility to maintain the existing state of utilization even as the enrollment grows to 1800 students.

Department	Total Existing	Total Future Teaching Stations
Core Academic		
(English, Mathematics, Social Studies, World	52	60
Languages)		
Science	14	15
Fine Arts	8	8
Performing Arts	3	3
Health & Physical Education	6	7 ¹³
Vocational & Technology ¹⁴	2	1
Other ¹⁵	3	3
GRAND TOTALS	88	97

- D&W recommends the following sizes and counts for the additional teaching stations based on our analysis of existing course-by-course enrollment and to provide the greatest instructional flexibility possible:
 - (6) General Education Classrooms @ 925 NSF¹⁶ each
 - (1) General Purpose Science Lab @ 1440 NSF This lab should be outfitted so that it can serve any of the scientific disciplines
 - o (1) Science Prep Room @ 200 NSF

¹³ While the analysis revealed a potential need for an additional Health & PE space, we believe this to be a misrepresentation of what is actually happening and the result of how Health & PE spaces are used. There are as many as 9 spaces being used for Health & PE instruction, but students are only scheduled into one of the two gyms. We believe that the existing Health & PE spaces could support a growth in enrollment without additional teaching stations.

¹⁴ Television Studio and Fabrication Lab

¹⁵ Auditorium, Multi-media Lab, and Interdisciplinary Classroom

¹⁶ NSF: Net Square Footage – the amount of usable floor area within a space.

Members of the Special Education Department identified the following space needs based on a target enrollment of 1800 9th-12th students. Some of the spaces identified already exist within the facility and could continue to serve special education students. After overlaying the future need onto the existing facilities, D&W concluded that Needham High School requires an additional 5,500 NSF of special education space to serve the target enrollment of 1800 students.

Total Need Necessary to Serve 1800 Students¹⁷

- o (9) Classrooms @ 750 NSF
- o (20) 125 NSF Small Group/Testing Spaces
- o (1) Life Skills Classroom Suite, Size @ 1200-1500 NSF
- o (10) 500 NSF Grade-level skill center rooms
- o Administrative Suite
- D&W recommends that all options explore opportunities to create intentional student collaboration space with the characteristics identified below:
 - o Some Noisy
 - o Some Quiet
 - o Some Open
 - o Some Enclosed
 - o Access to WiFi
 - Lots of Vertical Writing Surface
 - o Access to Digital Display
 - Some Hard Furnishings
 - o Some Soft Furnishings
 - Highly Mobile Furnishings
 - o Food Friendly

¹⁷ The Special Education Department currently occupies approximately 10,000 NSF which could continue to serve the special education curriculum.

2016 /	2017 Special Ed. Spac	es			Mar. 24, 2017
Level	Name	Qty.	Size	Total	
Level 1			(none)		
			subtotal:	0	
Level 2			(none)		
			subtotal:	0	
Level 3	Art Therapy	1	320	320	
Level 3	Classroom	1	725	725	
Level 3	Transitons	1	400	400	
		3	subtotal:	1,445	
Level 4	Skills Center	2	450	900	Classrooms
Level 4	Conf. Room	1	400	400	Conference Room
Level 4	Insight	1	720	720	Classroom
Level 4	Connections	1	450	450	Classroom
Level 4	Office	1	180	180	
Level 4	Clinicians Office	1	100	100	
Level 4	Strive	1	700	700	Classroom
Level 4	Spec. Ed. Office Suite	1	1,225	1,225	Offices
Level 4	PLC	1	1,250	1,250	
Level 4	Skills Center	1	650	650	Classroom
Level 4	Skills Center	1	500	500	Classroom
		12	subtotal:	7,075	
Level 5	Skills Center	1	700	700	Classroom
Level 5	Skills Center	1	750	750	Classroom
		2	subtotal:	1,450	
				9,970	SF TOTAL

Needham High School - Feasability Study

Needham High School - Feasability Study

Desired Special Ed. Space Summary

Mar. 24, 2017

Pathy	ways Program	<u> </u>	
Qty.	Size	Total	
2	750	1,500	750 NSF Classrooms w/ communicating doors between them
2	125	250	125 NSF Small Group Testing Rooms, embedded in classrooms
	-	-	
<u>STRIV</u>	/E and Post-gi	rad Programs	
1	1,350	1,350	Life Skills Classroom Suite, Size TBD but likely 1200-1500 NSF
2	125	250	125 NSF Small Group Testing Rooms, embedded in classrooms
Found	dations Progr	am	
1	750	750	750 NSF Classroom
1	125	125	125 NSF Small Group Testing Room
<u>ci : 11 -</u>	<u></u>		
SKIIIS	Centers		Γ
10	500	5,000	500 NSF Grade-level skill center rooms
10	125	1,250	125 NSF Small Group Testing Room, embedded into classroom
PLCs			
2	750	1,500	750 NSF Classrooms, with communicating door between
1	125	125	NSF Small Group Testing Rooms, shared between classrooms
Admi	nistrativa and	Othor Nooda	
Aum			
8	100	800	•8 Offices
1	300	300	•Conference Room for 12 (approx. 12' x 24')
1	80	80	•Workroom, Copier, Layout Space
1	100	100	•Files and general storage
1	150	150	•Welcome & Secretary Area
1	75	75	•Toilet
1	75	75	•Kitchenette
18	65	1,170	•TA Landing Space(s) =18 [storage area for personal belongings + small gathering area]
1	65	65	•Mailboxes
65	Total:	14,915	Square Feet

160 ft

160 ft

8

160 ft

LEVEL 5 SPECIAL EDUCATION SPACES

OPTIONS SUMMARY

INTRODUCTION

With a clear understanding of the number and size of classrooms required to meet the minimum needs of an expanded high school population, the team set to work exploring avenues for adding classroom spaces. Some areas of the campus were ruled out early on, as was the case with north end of the facility (existing tennis courts location – too remote from core academic areas) as well as the east side of the new

addition – facing Webster Street near the cafeteria (overly constrained site configuration). Ruling those out helped uncover several viable areas; within the existing 2-story library space, at the southwest corner, the existing courtyard space, and at the east side of the building, over the Webster Street entrance area – where two different ideas were studied.

The goal is to add 8 general classrooms – preferably (2) at 1,200 square feet that can be subdivided to form a pair of smaller seminar rooms, and (6) at 925 square feet

– about 20% larger than the existing, typical sized classrooms. These larger rooms will help with the schedule, as larger class size / sections can be scheduled without feeling the classrooms feeling too 'cramped' or overcrowded. The 925 square foot size classroom is the current MSBA recommended general classroom size – but more importantly, the educational program analysis for the high school shows a need for these larger sized classrooms. This will allow for the right balance of class size and number of sections to continue to be offered at the high school. In addition to the (8) general classrooms, it was found that

an additional science classroom should be built – as well as much as 5,500 square feet of mixed use special education instructional space(s).

Starting with the simplest solution, Option 'B' – the team attempted to achieve as much added classroom space as is possible within the existing building footprint. It was found to not only fall short, but it also reduced the size of the Library by about 2,000 sq. ft. (relocated to a partial new 4th floor, over the

existing Library space – which in Option B became (7) new classrooms and a collaborative space). The working group decided this was a useful exercise – but unlikely to be pursued due to the limitations, invasiveness, and the dramatic reduction in space for the Library.

The idea of using the space created by relocating the Library was one that had merit, and led to a couple of other options. The key benefit to re-purposing this space is that the 7 classrooms and collaboration spaces that would be built in the former Library location result in new classrooms central to the existing core academic areas of the building. The two options that explore this concept do so by building a new Library / Media Center at the existing courtyard (Option 'D'), or on the east side of the building over the Webster Street entry area (Option 'E'). These would be built in two phases; the first phase being the construction of the new Library, and the second being the renovation of the previous Library space into

classrooms and collaboration spaces on two levels. Key to this approach is the addition of an intermediate floor structure forming additional space on Level 4, above the existing Library footprint on Level 3 – netting space for new as many as (12) new classrooms on both levels.

The remaining two options focused on building an addition that would house the new classrooms without the need for a multi-phased approach. The

first of these is a 4-story addition (Option 'C') located at the southwest corner of the building – right along Admiral Gracey Drive. The second (Option 'F') is in the same location as Option 'E' – over the Webster Street entry area. It includes a 3-story addition that houses relocated administrative offices on the first level, and two levels of new classroom and collaboration space above. The new administrative area frees up space for added classroom space within the existing core academic areas as well, which entails minor interior renovations.

OPTION B ROOF + INTERIOR - MEDIA CENTER RELOCATED TO LEVEL 4

OPTION B ROOF + INTERIOR - MEDIA CENTER RELOCATED TO LEVEL 4

+1 CR +1 SCR

SMALL GROUP / COLLABORATION SPACE

OPTION B ROOF + INTERIOR - MEDIA CENTER RELOCATED TO LEVEL 4

+7 CR

OPTION B ROOF + INTERIOR - MEDIA CENTER RELOCATED TO LEVEL 4

+1 CR

OPTION C 4-STORY CORNER ADDITION

OPTION C 4-STORY CORNER ADDITION

OPTION C 4-STORY CORNER ADDITION 0 40 80 120 160 ft

MEDIA CENTER MOVED TO COURTYARD

OPTION D MEDIA CENTER MOVED TO COURTYARD

-6 CR +1 CR +1 SCR

CLASSROOMS

SMALL GROUP / COLLABORATION SPACE

OPTION D

MEDIA CENTER MOVED TO COURTYARD

750 SF DEPT. OFFICES MOVED TO LEVEL 2

NET CHANGE (+6 CR's)

+7 CR

OPTION E NEW MEDIA CENTER AT WEBSTER ST. ENTRY

NEW MEDIA CENTER - UPPER LEVEL

OPTION F NEW CLASSROOM WING AT WEBSTER ST. ENTRY

OPTION F NEW CLASSROOM WING AT WEBSTER ST. ENTRY

LEVEL 3

CLASSROOMS

SMALL GROUP / COLLABORATION SPACE

GYMNASIUM 'A'

Gymnasium 'A' was added to the high school in the 1950's, and remains essentially in its original configuration. Minor renovations some time ago included replacement roof top ventilation units, acoustical ceiling tile (ACT), and flush mount fluorescent light fixtures. The ACT is subjected to repetitive damage due to errant balls knocking tiles and light fixture baffles out of place. The hardwood floor system is original, and as is noted in the field report below – has numerous deficiencies. There is adequate depth in the existing floor system and structure to allow for a new floor to be installed. In addition to new floor, it is desired to relocate the ceiling mounted basketball hoops to keep the main court clear of obstructions when needed. It is recommended to replace the rooftop mounted ventilation units, the lighting, the floor system, re-paint the entire space, and to install acoustic panels to the underside of the exposed steel roof deck. See complete field notes below for more detail, as well as the preliminary design and costing information in the next section of the report.

Date of Design Team walk-through: 12/21/2016

Gym Floor Notes:

- Investigated refinishing vs. replacement; specific issues noted include:
 - Gym striping is too close to side wall no room for scoring table, hazard when playing on the side line
 - Gym floor has side wall basketball goals in the field of play
 - o Gym floor has numerous dead spots that affect play
 - Striping is faded and simple sand and re-finish doesn't seem to get rid of the "ghosted" striping.
 - Bleachers were planned to go in this winter, but Town wants to wait to install new bleachers if floor replacement proceeds (planned to happen as part of the classroom addition construction contract).
- Additional observations
 - Existing floor appears to be two cross laminated tongue & groove layers of solid wood sleepers on concrete slab. Total system thickness is approximately 3"
 - No major surface defects were noted (no buckling, worn grooves from bleachers, no water damage). Some minor surface imperfections were visible.
 - Floor includes volleyball inserts, badminton inserts, and gymnastic equipment anchors which will need to remain or be installed new.
- Options discussed:
 - Option 1: Sand & refinish floor. If refinished, the Owner would want to re-paint the court layout closer to the bleachers to avoid the proximity to the far side wall. This

option would also require relocating main court basketball goals and possibly modifying fixed side goals to be operable. This option would not address or would complicate:

- Dead spots / poor ball bounce performance issues
- Location of in-floor sleeves. Volleyball inserts would not align with basketball court, or sleeves would need to be relocated & the existing floor repaired.
- Option 2: Replace gym floor.
 - Demolish existing gym floor. Abate hazardous materials if detected.
 - Pour leveling slab over existing slab, topical mitigation, and new resilient wood gym floor system.
 - Re-paint gym floor with basketball court in preferred location, coordinated with new bleacher layout.
 - Relocate volleyball and any other sleeves to coordinate with new court layout. Relocated main court basketball goals.
 - Replace existing side-wall basketball goals move out of the field of play. (See gym equipment below).

Gym Ceiling

- Town noted the following deficiencies with the ceiling:
 - Acoustic tile is constantly hit & damaged during basketball play.
 - Acoustic performance is poor new larger speakers had to be added to the room.
 - HVAC distribution blows cold or hot air in just a few spaces temperature is often an issue
 - Lighting is poor.
- Additional Observations:
 - Basketball goals mounted to exposed underside of roof trusses. Will make re-location relatively easy.
 - Roof drainage configuration was not noted, but assumed adequate.
- Options discussed:
 - o Option 1:
 - Demolish acoustic ceiling.
 - Abate above ceiling hazardous materials if detected.
 - Paint exposed structure / HVAC / Plumbing / fire protection.
 - Install upright sprinklers
 - Install new HVAC units & distribution equipment
 - Install new lights

- Install new speaker system
- Install surface mounted acoustic treatments (tectum panels) as recommended by Acoustic Consultant.

Gym Walls

- Town noted the following deficiencies with the walls:
 - Wood paneling is old, dated, and trim is failing
 - No consistent way to hang championship banners
 - Side operating divider curtain takes up too much space (see gym equipment below)
- Additional observations:
 - CMU walls appeared to be in good condition no major cracks noted.
 - No acoustic block or acoustic wall treatments were observed.
- Options discussed:
 - Option 1: Remove wall paneling. Demolish existing wall paneling and wood trim. Abate if hazardous materials are detected.
 - Fill / repair CMU wall as needed.
 - Paint walls
 - Install wall pads where side court is in close proximity to wall.
 - Option 2: Install additional acoustic wall treatments, if not addressed in ceiling alterations noted above.
 - Option 3: Install consistent championship banner hanging system.

Gym Equipment

- Town noted the following deficiencies with the equipment:
 - Two side mounted basketball goals are within the basketball court field of play.
 - Four operable basketball goals use different types of drill-attachment winches.
 - Side-operating divider curtain is difficult to use. Large alcove creates a junk trap for miscellaneous equipment.
 - Old basketball goals require the edge padding to be cut to fit. These pads typically last about a season.
 - Town expressed a desire to have a wrestling mat hoist.
- Additional observations:
 - Main court basketball goals would need to be re-located regardless of flooring Option pursued above.

- Volleyball net sleeves and badminton sleeves would need to be relocated regardless of flooring Option pursued above.
- Gymnastics equipment anchors could remain if floor is re-finished as they are independent of court painting.
- Basketball goal winch operation is not accessible requires special tools above reach ranges. Recommend replacement of basketball goal systems and operators.
- Folding basketball goals are old, but still operable.
- o Basketball goals do not have vertical adjustment capability.
- Bleachers are broken and under contract to be replaced. The new layout will reduce the number of rows, allowing the court to be relocated. The Owner intended to delay this contract until a flooring solution is selected.
- Mat hoist installation would be dependent on a structural analysis of the existing roof.
- Options Discussed:
 - Option 1: Replace bleachers. (Assumed regardless of flooring option selected)
 - Option 2a: replace (4) wall mounted winches with support mounted winches and new wall switches on existing folding basketball goals. Relocate main court goals to align with new court layout
 - Option 2b: replace (4) folding basketball goals with new folding basketball goals.
 - Option 2c: replace (2) folding basketball goals at main court; replace (2) wall mounted winches with equipment mounted winches and wall switches at side court operable goals.
 - Option 3: Replace two fixed wall mounted basketball goals with operable wall mounted basketball goals.
 - Option 4: Install wrestling mat hoist.

BOILER & CHILLER REPORT(S)

NEEDHAM HIGH SCHOOL

Boilers & Chiller Study

Prepared by:

S. Chandrashekar, P.E. Sharmila C. Bail, P.E., LEED AP SHEKAR & ASSOCIATES, INC. 775 Pleasant Street #14 East Weymouth, Massachusetts 02189

March 8, 2017

Preface

Shekar & Associates, Inc. (SAI) prepared this report for Needham Public Facilities Department. The purpose of the report was to survey the existing conditions of the cast iron boilers and air cooled chilled water at Needham High School. This report contains reported issues, analysis and recommendations for the existing boilers & associated systems and air cooled chiller.

Throughout the project SAI worked closely with representatives from Needham Public Facilities personnel (Henry Haff & Carys Lustig), Needham High School facility group (Wayne Whisler & John Gass), Dore & Whittier Architects (Michele Rogers & Glen Gollrad), Eversource (Scott Johnston), Wilkinson Companies (John Sieminski) and various boiler manufacturer representatives to achieve the project objectives.

This report covers an assessment of existing conditions, recommendations and conclusions for proposed remedies and solutions.

Acknowledgements

Project Client and End User:

Needham High School

609 Webster Street Needham, MA 02494 Henry Haff, Project Manager/Public Facilities Department - Construction Carys Lustig, Supervisor of Administration/DPW at Town of Needham Wayne Whisler, Operations Division/ Town of Needham

Engineer

Mechanical, Electrical, & Plumbing Engineering:

Shekar & Associates, Inc.

775 Pleasant Street #14 East Weymouth, MA 02189 S. Chandrashekar, P.E. Principal Sharmila C. Bail, P.E. LEED AP

Architect

Dore & Whittier Architects, Inc.

260 Merrimac Street, Building 7 Newburyport, MA 01950 Michele Barbaro-Rogers *Glen P. Gollrad, NCARB*

Table of Contents

- Cover
- Preface
- Acknowledgements
- Table of Contents

1.0 Existing Conditions Assessment

- 1.1 Background
- 1.2 Boilers & Associated Systems
- 1.3 Gas Service
- 1.4 Air Cooled Chiller

2.0 Reported Issues and Analysis

- 2.1 Reported Issues
- 2.2 Analysis

3.0 Recommendations

- 3.1 Boilers
- 3.2 Water Treatment
- 3.3 Air Cooled Chiller
- 3.4 Conversion of 4th Boiler to Dual Fuel

4.0 Cost Estimate

Cost Worksheet

5.0 Appendices

- Appendix A: January 18, 2017 Meeting Notes prepared by Shekar & Associates, Inc.
- Appendix B: Supplemental information on water contamination, treatment and process
- Appendix C: Water treatment & glycol equipment cuts [chemical filter feeder & glycol feed station]
- Appendix D: Air cooled chiller equipment cut

1.0 Existing Conditions Assessment

1.1 Background

- 1.1.1 S. Chandrashekar & Sharmila Bail visited Needham High School a number of times to collect existing information and investigate present issues with the boilers and air cooled chiller. At these visits they met with various personnel from Needham Public Facilities Department, Needham High School Operation Division, Dore & Whittier Architects, FIA and Frank I Rounds.
- 1.1.2 Henry Haff emailed existing Mechanical, Plumbing & Electrical drawings and other information related to the issues in the boiler room for review.
- 1.1.3 Needham High School is fully heated by cast iron boilers and cooled by an air cooled chiller. Present total area of the school is approximately 300,000 sq. ft. and future new addition will be between 8,000 sq. ft to 12,000 sq. ft.

1.2 Boilers & Associated Systems

1.2.1 Boilers

Four (4) cast iron boilers are located in the boiler room. Three (3) boilers are currently active and one (1) boiler is inactive due to a defective boiler burner and has been disengaged.

Boiler rating for each boiler is as follows:

Manufacturer: Burnham Model No. V1119 Fuel: Natural gas Input: 4,691 MBH Output: 3,739 MBH Burner: HP/480V/3P

Three Active Boilers

Fourth Inactive Boiler

Typical Boiler Burner

Burner Nameplate

1.2.2 Boiler Venting & Combustion Air

Boilers are vented through a common vent running up to the roof. Combustion air is introduced into boiler room through a combustion air intake louver with motor operated damper.

Common Venting

Combustion Air Louver
1.2.3 Boiler Recirculating Pumps

Each boiler has a recirculating pump. Pump rating is as follows:

Manufacturer: Bell & Gossett Flow: 215 GPM Head: 15 feet Motor: 1 1/2 HP/480V/3P

Boiler Recirculating Pump

1.2.4 Hot Water System Pumps

There are two hot water system pumps. One pump is active and the other pump is a standby. Rating of the pump is as follows:

Manufacturer: Bell & Gossett Flow: 1250 GPM Head: 130 feet Motor: 50 HP/480V/3P

Each pump is furnished with variable frequency drive (VFD).

Hot Water System Pumps

Pump Nameplate

1.2.5 Expansion Tanks

System pressure is maintained through three (3) expansion tanks. Each expansion tank has a capacity of 528 gallons.

Expansion Tanks

1.2.6 Air Separator

Hot water system includes two (2) air separators. Each air separator size is 8" with 840 GPM capacity.

- 1.3 Gas Service
 - 1.3.1 Gas Service & Meter

Underground gas service is located near the boiler room. Incoming gas service configuration consists of gas shut-off valve, gas meter and pressure reducing station. As per Eversource representative, Scott Johnson, gas is served by intermediate gas pressure service.

Gas Service

Gas Meter

1.3.2 Gas Piping

10" gas service enters the building. Gas appliances include boilers, hot water heater, kitchen equipment, etc.

Incoming Gas Pipe

Gas Piping to Boilers

1.3.3 Boiler Gas Pipe

8" gas pipe services four (4) gas boilers. Total capacity at 8" gas pipe is 18,764 CFH. The pipe has the capacity to carry this load.

Typical Boiler Gas Train

1.4 Chiller & Associated Systems

1.4.1 Chiller

The air cooled chiller is located outdoors. The chiller is damaged and has not been in operation since last year. During the cooling season the school has rented temporary chillers to operate the chilled water system.

Chiller

Chiller rating is as follows:

Manufacturer: McQuay Capacity: 300 tons Chilled Water Flow: 720 GPM Entering Water Temperature: 54 °F Leaving Water Temperature: 44 °F

1.4.2 Chilled Water Pumps

There are two (2) chilled water pumps. One is a primary pump and the other a standby. Rating of pump is as follows:

Manufacturer: Bell & Gossett Flow: 720 GPM Head: 130 feet Motor: 40 HP/480V/3P

Each pump is furnished with variable frequency drive (VFD).

Chilled Water Pumps

2.0 Reported Issues and Analysis

2.1 <u>Reported Issues</u>

- 2.1.1 After visiting the school several times and having discussions with various groups, reported issues can be broadly classified in the following three categories:
 - Boiler operation & gas pressure
 - Dirt & other contaminants in hot water and chilled water circulation piping system.
 - Air cooled chiller not working.

Refer to Appendix A which includes Shekar & Associates, Inc. January 18, 2017 Meeting Notes. These meeting notes include a summary of issues at the site.

- 2.1.2 Boiler Operation & Gas Pressure
 - 2.1.2.1 At present only three boilers are in operation and the fourth boiler is not working.
 - 2.1.2.2 Needham High School facility group informed that during severe cold temperatures they can only fire two boilers at a time. Due to inadequate gas flow the third boiler cannot be fired.
 - 2.1.2.3 Shekar & Associates, Inc. followed up with Scott Johnson of Eversource who claimed that their street gas network has adequate gas volume and gas pressure.
- 2.1.3 Hot & Chilled Water Contamination
 - 2.1.3.1 Needham High School facility group showed the water collected at the hot water pump from the piping system. It was brownish in color and appeared to have sediment settled at the bottom.
 - 2.1.3.2 John Burris, Water Treatment Manager at Frank I Rounds Co. visited the site to analyze the hot/chilled water in the piping systems. Sample taken at the boiler found impurities and discoloration.
 - 2.1.2.3 Needham High School facility group informed the piping system may not have been properly flushed and cleaned at the end of construction. Hot and chilled water systems were commissioned without proper flushing or cleaning of either system.

- 2.1.4 Air Cooled Chiller
 - 2.1.4.1 At present the outdoor air cooled chiller is not working. This may be due to damage to the condenser coils. In the interim, the school is renting temporary chiller during the cooling season.

2.2 Analysis

- 2.2.1 Boilers
 - 2.2.1.1 Viewing the boilers exterior appearance and boiler piping, there were no water leaks on the floor or burn marks at the jacket. With no visible signs of damage the cast iron sections may not be cracked.
 - 2.2.1.2 Shekar & Associates was informed three individual boilers are producing rated output capacity. This means the gas burner and cast iron sections of each individual boiler are working satisfactorily.
 - 2.2.1.3 Gas pressure and volume in the piping system are yet to be established. Boiler operation/performance testing should be conducted in front of all parties including Needham High School personnel and Scott Johnson of Eversource to determine the source of the issues. Attempt to schedule a test date was postponed due to the mild temperatures. Any test with the mild temperatures may not be accurate due to the demand for less gas volume at the street. New test date to be determined.
 - 2.2.1.4 Present boiler capacity should be able to handle future building addition (estimated to be 8,000 sq. ft. 12,000 sq. ft.).

Existing 300,000 sq. ft x 30 Btu/hr/sq. ft. (avg. for well insulated bldg.) = 9,000 MBH

With the additional of 12,000 sq. ft.:

312,000 sq. ft. x 30 Btu/hr/sq. ft. = 9,360 MBH

Total output from three existing boilers (fourth boiler is a standby boiler & not in operation):

3 x 3,251 MBH = 9,753 MBH

- 2.2.2 Hot Water & Chilled Water Systems
 - 2.2.2.1 At present, there are two chemical shot feeders for each system. However this equipment may not provide adequate water treatment of the hot & chilled water systems. Also, there is no monitoring of the concentration of glycol circulating in the system.
 - 2.2.2.2 Dirt and other contaminants along with low glycol concentration in the hot & chilled water circulating system may have damaged the chiller and degraded the life of the pumps and boilers.
 - 2.2.2.3 Refer to Appendix B for more detail on the water contamination and its components.
- 2.2.3 Air Cooled Chiller
 - 2.2.3.1 One option included reusing the compressors and replacing the condenser coils in the chiller. However, after Shekar & Associates, Inc. had a series of conversations with chiller manufacturer (McQuay) and contractors the general consensus was that repair of the existing chiller was not a viable or feasible option. A new chiller will be more efficient and energy savings will justify the cost of a new chiller.

3.0 Recommendations

3.1 Boilers

- 3.1.1 We recommend to retain the existing cast iron boilers. This summer the boilers should be thoroughly cleaned and checked inside for any wear and tear and for any cracks at the cast iron shells.
- 3.1.2 After thoroughly checking the boilers the decision of replacing the existing boilers should be rechecked at that time.
- 3.1.3 We are still looking for a suitable date and time to conduct the boiler operation/performance testing with Wilkinson Companies and Eversource Gas. Findings from this test could determine why three boilers can not be run at the same time.

3.2 Water Treatment

- 3.2.1 This summer we recommend to flush and clean the hot water and chilled water piping systems.
- 3.2.2 Furnish and install cartridge filters in the piping systems.
- 3.2.3 Furnish and install chemical filter feeders (Neptune tank) for each system.
- 3.2.4 Furnish and install glycol feed station for piping system.
- 3.2.5 Refer to Appendix C for water treatment & glycol equipment cuts.

3.3 <u>Air Cooled Chiller</u>

- 3.3.1 It is our understanding the present 300 ton air cooled chiller is satisfactorily cooling the building.
- 3.3.2 The anticipated building addition is 8,000 12,000 sq. ft. Based on an average 250 sq. ft./ton, additional cooling load will be:

12,000 sq. ft. = 48 additional tons250 sq. ft/ton

3.3.3 We recommend installing a new high efficient air cooled chiller with frequency drive on the chiller and condenser fans. New chiller size should be between 350 to 375 tons. See Appendix D for chiller equipment cuts.

3.4 Conversion of 4th Boiler into Dual Fuel ([Oil/Gas Combination]

3.3.1 In our opinion, the conversion of the 4th boiler to dual fuel (including installation & space requirements of fuel oil tank and related piping) may be very costly. This option requires a detailed study.

4.0 Cost Estimate

• Cost Worksheet

Needham High School Heating and Cooling Systems Cost Worksheet

Boiler / Heating System	Size / Detail	Unit Cost	Material Cost	Installation Cost	Cost
Complete hot water system treatment and flushing	Frank I. Rounds Co.				\$3,425
Chemical filter feeder for hot water system	Frank I. Rounds Co.	\$740	\$125	\$500	\$1,365
(5) - 20 micron filter bags, (5) - 5 micron filter bags, (5) 1 micron filter bags	Frank I. Rounds Co.				\$350
Boilers operation/performance testing - 1/2 day	Wilkinson Co.				\$1,500
Option for dual fuel boiler system - either converting (1) unit or purchasing a new unit, cannibalizing Boiler #4 for spare parts for the other 3 boilers					TBD
			Total:		\$6,640

3/8/2017

Needham High School Heating and Cooling Systems Cost Worksheet

Chiller	Size / Detail	Unit Cost	Material Cost	Installation Cost	Cost
1. Remove & discard from site existing McQuay 300 ton chiller. 2. Furnish and install new 375 ton air coold chiller with VFD drives. 3. Flush and clean chilled water piping. 4. Reconnect chilled water piping 5. Reconnect controls to building energy management system. 6. New power wiring, circuit breakers, etc.	Daikin - 375 TONS	\$200,000.00		\$200,000	\$400,000
Complete chilled water system treatment and flushing	Frank I. Rounds Co.				\$3,425
Chemical filter feeder for chilled water system	Frank I. Rounds Co.	\$740	\$125	\$500	\$1,365
(5) - 20 micron filter bags, (5) - 5 micron filter bags, (5) 1 micron filter bags	Frank I. Rounds Co.				\$350
Glycol material direct from supplier (gallons)	5000	\$4.50			\$22,500
Glycol feed station	Frank I. Rounds Co.	\$4,925	\$750	\$2,160	\$7,835
			Total:		\$435,475

3/8/2017

5.0 Appendices

- Appendix A: January 18, 2017 Meeting Notes prepared by Shekar & Associates, Inc.
- Appendix B: Supplemental information on water contamination, treatment and process
- Appendix C: Water treatment & glycol equipment cuts [chemical filter feeder & glycol feed station]
- Appendix D: Air cooled chiller equipment cut

Appendix A

Shekar & Associates, Inc. January 18, 2017 Meeting Notes

Consultants Electrical Engineering Mechanical Engineering Energy Studies

🗍 MEETING NOTES 📋

PROJECT: <u>Needham High School - Boiler Replacement Study</u> <u>Needham, MA</u>

JOB NO. <u>510171</u>

DATE: January 18, 2017

PRESENT:

NAME	REPRESENTING
Hank Haff	Town of Needham
Carys Lustis	Town of Needham
Wayne	Town of Needham
John	Town of Needham
Simon	Town of Needham
Glen P. Gollrad	Dore & WhittierArchitects, Inc.
Yvon Blais	FIA, Inc.
Sharmila Bail	Shekar & Associates, Inc.
S. Chandrashekar	Shekar & Associates, Inc.

- It is important to note that the manufacturer of the existing Burnham cast iron sectional boilers no longer supports older generations of V11 Boilers with replacement sections. If the boiler was shipped & built prior to 2004, current V11 replacement sections will not align with the existing boiler sections. However, maintenance staff did inform that boiler sections have been replaced in the past, these boilers may have been on the cusp of replacement section compatibility.
- 2. Even though the hot water supply and return piping was flushed and cleaned when the new heating system was installed, and chemical treatment notwithstanding, there remains a large amount of debris, sludge and scale that still remains within the piping system. This debris has been, and continues to be, detrimental to the system heating pumps damaging seals and impellers even with frequent and regular blowdowns to flush the system.
- 3. Maintenance staff indicated 5" W.C. of gas pressure is maintained at the inlet to the Burner gas trains. At 5.00 Ins. W.C. of inlet gas pressure, we would recommend another review of the Burner submittal data to determine if 5.00" Ins. W.C. is the actual inlet gas pressure required for this gas train/burner assembly.
- 4. Viewing the boilers and near boiler piping, there are no water leaks on the floor or burn marks at the jacket or other visible signs of damaged cast irons sections.

775 Pleasant Street #14, East Weymouth, MA 02189 Tel (781) 337-8347 Fax (781) 337-2952 Email: shekarco@verizon.net

Consultants Electrical Engineering Mechanical Engineering Energy Studies

 MEETING NOTES I
 PROJECT: Needham High School - Boiler Replacement Study JOB NO.: <u>510171</u>
 DATE: January 18, 2017
 Page 2

- 5. During the site visit, the outside air temperature was 40 °F. Boiler #2 was the sole Boiler in operation and the Hays/Cleveland Boiler Plant control panel displayed a return water temperature of 156 °F. Supply water (Header) temperature was unrecorded.
- 6. Each Boiler is equipped with a return water temperature control system with diverting valve that, when in operation, is designed to constantly blend boiler hot LWT supply water with return EWT to assist in maintaining a return water temperature to the Boiler above 140 °F. to prevent thermal shock as well as to eliminate condensing in the Boiler. This valve/setpoint control system is from the small black Burnham control panel mounted on the top right front face of each Boiler. Temperature sensor for this control is found in the return piping at the rear of each Boiler, near the lower right hand return connection (facing the back section of the boiler). Diverting valve on Boiler #4 is a leaker.
- 7. No visible water leaks found in the near boiler piping, valves and fittings.
- 8. No discernable odors of flue gas within the boiler room.
- 9. All four boiler side jacket panels are not burned or scorched indicating seals between boiler sections are intact and still pressure tight. No flue gas leakage from the Boilers are immediately evident.
- 10. Burner #4 has been determined by Service Technician (GT Wilkinson, Inc. Rockland, MA) to not be suitable for operation and therefore is not in use. Whether this boiler could be cannibalized for parts or be converted into a dedicated oil-fired boiler with new burner was discussed. This needs to further investigated in the study.
- 11. During the coldest of weather, staff indicate they can only run 2 Boilers at full rate, which is dependent upon how cold the OA temperature, often times does not meet their heating needs.
- 12. The maintenance staff is of the opinion that the volume of gas delivered to the burners is insufficient to allow all three boilers to function at high fire. Again, a review of the manufacturers minimum inlet gas pressure should be conducted.
- 13. Control system is complex, and staff have resorted to some manual forms of operation in lieu of automatic controls.
- 14. Building size is approximately 300,000 sq. ft. The group was informed that the building wall & roof have good insulation and windows have insulating glass. The new addition will be approximately 8,000 sq. ft.
- 15. Shekar & Associates contacted Scott Johnson of Eversource prior to the meeting to get initial information on the present gas pressure at the school. Scott emailed Shekar & Associates gas related documentation. See attached. Shekar & Associates will continue to be in contact with the gas company regarding the lack of gas volume delivered to the building. <u>Note:</u> After the meeting Shekar contacted Scott again. Scott will visit the site soon and check the meter sizes and flow conditions.

775 Pleasant Street #14, East Weymouth, MA 02189 Tel (781) 337-8347 Fax (781) 337-2952 Email: shekarco@verizon.net

Consultants Electrical Engineering Mechanical Engineering Energy Studies

 MEETING NOTES I
 PROJECT: Needham High School - Boiler Replacement Study JOB NO.: <u>510171</u>
 DATE: January 18, 2017
 Page 3

- 16. Heating system components are monitored through a building energy management system. Shekar & Associates to email what components or other data (ex. boiler supply & return temperatures, prior Eversource bills indicating gas usage, etc.) they require to review the heating system.
- 17. In general, Hank indicated the following information should be addressed in the study report:
 - a. Identifying current issues/problems.
 - b. Repair or testing of gas line/pressure/volume at the high school prior to any future boiler work.
 - c. Replacement of boilers time frame, if necessary.
 - d. Possible oil fired boiler (4th boiler with new oil burner) option.
 - e. Will the present boilers handle the capacity of the 8,000 sq. ft. addition?
 - f. Improvements / recommendations to existing system.
- 18. Preliminary thought on the existing boiler issues can be broken down into three broad areas:
 - a. There may be inadequate volume of gas into the building.
 - b. Dirty water in the heating piping system. Possible cleaning or filtering of system.
 - c. Automatic control issues.

Unless notified to the contrary, these notes are assumed to be accurate.

Prepared by: Shekar & Associates, Inc. cc: All present

July 1, 2005

Needham Permanent Building Committee Steve Popper 470 Dedham Avenue Needham, MA 02192

Dear Mr. Popper:

This letter is in response to our conversation regarding the new gas service to the Needham High School, which is located at 609 Webster Street in Needham. NSTAR Gas has agreed to provide gas service to the above-mentioned project. The project has been estimated at no charge to the customer.

NSTAR Gas does have an adequate supply of natural gas available to serve your projected gas requirements of 21,600 CFH. NSTAR Gas can supply your gas requirements with a new 4-inch intermediate-pressure service. If these loads change please contact NSTAR Gas with the revised loads and the project will be re-estimated with the new load requirements. If elevated pressure is required, the Massachusetts Gas Code requires an elevated pressure application to be completed and approved by the local gas utility prior to installation of equipment. All intermediate pressure services must be located outside of the building due to NSTAR Gas Standards.

Based on an engineering estimate by NSTAR, a system improvement will be required to accept the requested load at 609 Webster Street, Needham. This system improvement is as follows:

- Install approximately 3,000 feet of new 8-inch intermediate-pressure gas main on Central Avenue, to replace the existing 4-inch intermediate-pressure main, beginning at Great Plain Ave and ending at Bess Road.
- Install a new 480 foot 4-inch intermediate-pressure service on Webster Street from the main to the building.

The new natural gas requirements cannot be accepted until both the system improvement and the new service are completed.

The gas application included in this letter must be signed on both sides by the owner of the property and returned to NSTAR Gas before any work can be started.

This offer and commitment is good until the end of the current construction season (December 31) or unless specifically revoked by NSTAR Gas. At the start of a new construction season the package will be reviewed at current construction costs and base gas rates.

There is the potential for NSTAR Gas to offer financial incentives to eligible commercial /industrial customers who incorporate pre-qualified "new technologies" within their facility. The program pays a percentage of the incremental cost for high efficiency equipment or one year's energy savings up to a pre-determined customer cap. Each project is looked at on a "case-by-case" basis to determine the incentive awarded with the potential maximum amount awarded for each job to be no more than \$20,000.

The customer will need to supply NSTAR Gas with the following:

- Customer name, address, and NSTAR Gas account number
- Three (3) installation quotes
- Engineering analysis detailing annual energy savings resulting from the installation
- Specification sheet on the proposed equipment

The "New Technologies" measures include:

- Desiccant Dehumidification
- Condensing Boilers/Furnace
- Direct Contact Water Heaters
- Combustion Controls, and
- Other qualifying measures

NSTAR Gas is not responsible for restorations of lawns and driveways. Loam and seed will not be provided. NSTAR Gas will place temporary patch on the hard top that is disturbed on private property.

If you have any additional questions concerning this matter, please feel free to contact me. I may be reached at (781) 441-8750.

Sincerely,

Scott Johnson Account Executive

C: James Ziobro-Griffith & Vary, Inc

Job	STREET NO.		Flr./Apt.		CITY			ACCT.#	
Location	609 Webst	er Street			Needham	02494			
Billing	NAME				PHONE		TYPE OF BUSINES	S	SIC#
Info	Needham I	High School			781-453-8	3040			
ADDRESS	(If Different)				City		Comm.	Ind.	Mun.
_									Yes
Credit	Approved	Deposit	Rate	Heat	Firm	Interruptible	Corp	Part	Prop
Info			6037	' Yes	Yes				
Set	Turn On	Read In	Meter	CHG	New Service	Fit Req'd	Date Wanted	Meter Loc	CIC Order by:
					Yes	Yes	9/7/2005	OS4	
	Equipment								
Existing Load								Existing MTR S	ize
	Equipment	4 boilers@	@4474	each-2	2 water he	aters@70	0 each-kitcher	n@1,000	
New Load		2 water he	eaters	@400 e	each-sciei	nce room	s@440	E.A.R \$	
Future Load					(Equipment)	21,600 (CFH		
CFH			Diversity:			т	otal CFH 21,600		
Servic	е		Service F	Req'd	Street Pressu	re	Pressure Required		Customer Line Size
Siz	е		Yes		IP		8"		
	Size								
Meter Needed:			Installatio	on:	Fit	Ву		Date	
	Size								
Regs Needed:			Installatio	on:	Meter	Ву		Date	
Additional Inform	ation:			Attent	tion John J	lackson			
				Pleas	e set fit for	r new mete	er according to	Mike Forre	est's specs
							2		

Memo

Internal Meter

Company Rep

Scott Johnson

Date 8/2/2005

Appendix B

Supplemental Information on Water Contamination, Treatment & Process

65 York Avenue Randolph, MA 02368 Tel: 781-963-6440 Fax: 781-963-2067

Shekar & Associates, Inc. 775 Pleasant Street, Unit 14 East Weymouth, MA 02189 Needham High School

February 20, 2017

This letter is in response to the investigation into the water treatment and system operation of the condensing boilers and hot water system as well as the air cooled chilled water systems at the Needham High School in Needham Massachusetts.

The initial visual inspection of both the boiler water and chilled water systems produced samples that showed signs of degraded glycol and a slight bacteria smell. After flushing the sample site it was determined that the samples were also full of dirt, mud and iron.

My concern with the samples of the water is with all of these conditions. The degraded glycol will breakdown to become a source of food for normally occurring bacteria or reducing the system pH causing an attack on the system metals (Copper and iron). The dirt in the system typically acts as an abrasive eroding the system at its weakest points or restrictions; elbows, valves, threaded joints, pumps and pump seals. All of these conditions individually can wreak havoc in any water system and together will cause failures.

Moving forward I am recommending a full cleaning of both systems. Below I have outlined the procedure for the cleanings that we would conduct in conjunction with onsite staff. I will also recommend the replacement of the chemical feeders with filter feeders (See attached cut sheet). These filter feeders with the filters (Ranging from 50 down to 1 micron in size) will aid in the continued removal of dirt, mud and debris after the cleaning and flushing have been finished. After review of the system parameters I see the need for glycol in the chilled water system but not in the hot water system. The chilled water system exits the building requiring freeze protection whereas the hot water system does not exit the building. In this case the chilled water system should have and I am recommending a glycol make-up tank and system (see cut sheet) so that the chilled water system is made up with the correct percentage glycol and not water. This will eliminate the concern of the system glycol being diluted and eventually becoming a concern. I am also recommending the addition of system inhibitors (Molybdate and Nitrite) to help control the pH and protect the metals in the system.

Attached are Technical Notes from Chemtex giving more in-depth descriptions of my concerns with the system water conditions.

Please don't hesitate to contact me if you have any questions.

Thank you,

Confidential

65 York Avenue Randolph, MA 02368 Tel: 781-963-6440 Fax: 781-963-2067

Shekar & Associates, Inc. 775 Pleasant Street, Unit 14 East Weymouth, MA 02189 Needham High School

February 20, 2017

We are pleased to offer you pricing on the following equipment and services for the treatment of your water systems:

SERVICE

Frank I. Rounds Company will provide chemical treatment and service for the systems listed in this contract. As part of the agreement, Frank I. Rounds Company will provide the following:

Even though your system is not a new system we treat the cleaning of this system in the same way.

Clean-out Procedure for New or Fouled Piping Systems

The internal surfaces of a newly installed piping may be contaminated with oil, grease or other protective coatings used in the manufacturing process. Such coatings must be removed since they reduce the heat transfer rate and could result in the rupture from overheating. The primary objective of pre-cleaning a boiler is to remove these impurities.

We recommend that the following procedure be performed on each new or fouled piping systems put into service and on existing boilers each time tubes are replaced.

NOTE: Before beginning the clean-out procedure, the system must be flushed of existing chemicals and glycol.

PROCEDURE:

- 1. Clear the pipe by removing any physical debris.
- 2. Inspect all internal waterside surfaces, including tubes, and remove any debris. It may be necessary to use a high pressure hose to flush out any inaccessible areas.
- 3. Replace the regular gauge with a temporary gauge glass that can be discarded after the cleaning.
- 4. Attach an overflow pipe to one of the top of any boiler openings and route it to a safe point of discharge. A relief or safety valve tapping may be used.

- 5. Remove all water relief valves and steam safety valves in order to avoid contamination. Refer to the manual when reinstalling these valves after cleaning.
- 6. Fill the piping with clean water until the system is completely flushed.
- 7. Add the recommended amount of NeutrapHigh Plus for the system size. Add the chemical as you are adding water but never before adding the water.
- 8. Continue to fill the system to increase the pressure to system maximum minus ten psi (X 10).
- 9. Turn on the circulating pumps to circulate the cleaning chemicals through the system for a period of not less than 24 hours and no more than 72 hours.
- 10. Throughout the entire process, each blow-down point or valve should be blown at least once every two hours. Blow the surface and/or the continuous blow-down points first, followed by the other blow-down points lower on the boiler. After each blow-down cycle, the water level should be brought back to full. After each blow-down cycle, the Total Alkalinity of the cleaning solution should be checked. If the level drops below 2500 ppm, additional NeutrapHigh Plus should be added to the system.
- 11. After the clean-out is completed then the flush out is started to remove the cleaning solution.
- 12. Drain the system using caution to insure that the water is discharged safely and in accordance with local, state and federal guidelines.
- 13. Open the make-up valve and the drain valve to maintain system volume and flush the system so that you don't drain the system completely. Test the system to get the conductivity to the same as the make-up water.
- 14. If the system requires glycol, add the prescribed percentage of glycol to the system at this time.
- 15. Add the recommended amount of Loop Guard 261-05 to maintain 1000 1500 ppm of Nitrite in the system for the best protection.

Caution: THE CHEMICALS USED IN THIS PROCEDURE ARE CORROSIVE TO EYES AND SKIN. ALWAYS REFER TO THE MATERIAL SAFETY DATA SHEET TO INSURE THAT THE PROPER SAFETY EQUIPMENT AND PRECAUTIONS ARE PRESENT.

Guarantee:

Frank I. Rounds Company guarantees that, following a post "Clean-Out" **visual** inspection of the equipment being treated, if the heat exchanger surfaces are not free of deposits the Frank I. Rounds Company will remove deposits at no additional cost to the owner.

Boiler Treatment:

NeutrapHigh Plus -05 – This is a concentrated Alkaline – Polymer – Surfactant product that is designed to be used to clean out new piping systems or to neutralize residual acid in older systems that have become fouled

Loop Guard 261-05 – This is a concentrated product that is a buffered solution of Sodium Nitrite designed for use in chilled or hot closed recirculating systems. This

product contains nitrite for protection for the mild steel, azole for protection of the yellow metals (bronze and copper) phosphate and an iron control polymer. This product is compatible with glycol.

Total: \$3,425.00 per system (\$6,850.00)

(Price includes the performance of the above "Clean-Out" procedure and Quarterly system checks for 1 year)

Chemical Equipment:

 1 – Glycol Feed Station (G-50-1-A) – This system comes with a 50-gallon tank and a bronze rotary primary pump. Hand-Off-On indicator switch for the pump motor. Pump "on" and "low level" indicator lights included.

\$4,925.15 each, plus any shipping and taxes.

Installation estimated at 8 hours with 2 service technicians at \$135.00/hour (\$2,160.00) Installation Materials: \$750.00 (Estimated)

Fire watch (If needed) is the responsibility of the School.

2 – Chemical Filter Feeders (FTF-5DB)

\$739.25 each, plus any shipping and taxes.

(\$1,478.50)

Installation estimated at 4 hours with 2 service technicians at \$135.00/hour (\$1,080.00) Installation Materials: \$250.00 (Estimated)

Fire watch (If needed) is the responsibility of the School.

10 – 20 micron Filter Bags \$21.45 each, plus shipping and taxes. (\$214.50)

10 – 5 micron Filter Bags\$21.45 each, plus shipping and taxes.(\$214.50)

10 – 1 micron Filter Bags \$27.75 each, plus shipping and taxes. (\$277.50)

If you have any questions please feel free to contact me.

Please check out our newly updated website www.frankirounds.com

Iohn Burris

John Burris Water Treatment Manager FRANK I. ROUNDS COMPANY 65 York Ave Randolph, MA 02368-0746 Office: (781) 963-6440

Confidential

Fax: (781) 963-2067 Cell: (781) 706-3728 Email: <u>JohnB@frounds.com</u> <u>www.frankirounds.com</u>

NEUTRAPHIGH PLUS

1 – PRODUCT IDENTIFICATION

PRODUCT NAME:NEUTRAPHIGH PLUS

MANUFACTURER'S NAME:	International Chemtex Corporation
MANUFACTURER'S ADDRESS:	
MANUFACTURER'S PHONE:	
EMERGENCY PHONE NUMBER:	(800) 424-9300 CHEMTREC
	This product is designed for use in industrial, as

2 – HAZARDS IDENTIFICATION

SIGNAL WORD: DANGER

POTENTIAL HEALTH EFFECTS:

H315 H320: Causes skin and eye irritation H302: Harmful if swallowed H335: May cause respiratory irritation

H318: Causes serious eye damage

PRECAUTIONARY STATEMENTS:

P280: Wear protective gloves/protective clothing/eye protection/face protection.
P264: Wash thoroughly after handling.
P402+404: Store in a dry place. Store in a closed container.
P403+404: Store in a well ventilated place. Keep cool.
P321: Specific treatment (see First Aid Measures on Safety Data Sheet).

3 – COMPOSITION / INFORMATION ON INGREDIENTS

HAZARDOUS INGREDIENT Sodium Hydroxide

PERCENT 10-20

CAS NUMBER 1310-73-2

NEUTRAPHIGH PLUS

PAGE 1 of 4

REV C

NEUTRAPHIGH PLUS

4 - FIRST-AID MEASURES

EYES:	Flush eves with abundant water for 15 minutes. Consult a
SKIN (DERMAL):	physician. Promptly remove contaminated clothes. Wash skin with
SWALLOWING (INGESTION):	soap and water. If irritation persists, consult a physician.
	physician.
BREATHING (INHALATION):	ventilated area. Call a physician.

5 – FIRE-FIGHTING MEASURES

6 – ACCIDENTAL RELEASE MEASURES

LEAK AND SPILL PROCEDURES:	.Use specified protective equipment. Contain and absorb
	with inert material. Sweep up spill and reclaim or place in a covered waste disposal container. Wash area with water.
WASTE DISPOSAL:	.Dispose of contaminated product via an approved
	chemical waste disposal firm and in accordance with all federal, state and local regulations.

7 – HANDLING and STORAGE

 HANDLING PROCEDURES AND EQUIPMENT:Handle an open container with care. See section 8 for personal protection equipment. Avoid all skin contact and wash thoroughly after handling.

 STORAGE REQUIREMENTS:Store in a tightly sealed container in a cool, dry and well-ventilated area.

 SPECIAL CONSIDERATIONS:None

8 – EXPOSURE CONTROLS / PERSONAL PROTECTION

ENGINEERING CONTROLS:	.Local exhaust
RESPIRATORY PROTECTION:	.Not required for normal use.
PROTECTIVE GLOVES:	.Chemical resistant gloves (neoprene, nitrile, PVC, natural
	rubber).
EYE PROTECTION:	.Face shield with chemical splash goggles.
ADDITIONAL MEASURES:	.Wear suitable chemical resistant protective clothing
	J

NEUTRAPHIGH PLUS

NEUTRAPHIGH PLUS

9 - PHYSICAL / CHEMICAL PROPERTIES

PHYSICAL STATE:	Liquid
BOILING POINT:	NÉ
FLASHPOINT:	NE
AUTOIGNITION TEMP:	NA
UPPER EXPLOSION LIMIT (% BY VOL):	NA
LOWER EXPLOSION LIMIT (% BY VOL):	NA
VAPOR PRESSURE:	NE
VAPOR DENSITY (air=1):	NE
EVAPORATION RATE:	NE
SOLUBILITY IN WATER:	Complete
VOLATILITY INCLUDING WATER:	NE
pH:	12-14
SPECIFIC GRAVITY:	 1.155-1.205
ODOR:	No appreciable odor
APPEARANCE:	Light Tan
	-

10 – STABILITY and REACTIVITY

CHEMICAL STABILITY:Stable HAZARDOUS POLYMERIZATION:Will not occur INCOMPATIBLE MATERIALS:Avoid strong acids HAZARDOUS DECOMPOSITION PRODUCTS:.....None known

11 – TOXICOLOGICAL INFORMATION

ROUTES OF ENTRY:

BY EYE CONTACT:	Possible
BY SKIN CONTACT:	Possible
BY SKIN ABSORPTION:	NA
BY INHALATION:	NA
BY INGESTION:	Possible
THRESHOLD LIMIT VALUE (UNITS):	NE
ACUTE OVER EXPOSURE EFFECTS:	Eye irritant. Risk of serious damage to eyes. Skin irritant.
CHRONIC OVER EXPOSURE EFFECTS:	NE

CARCINOGENIC ACCORDING TO THE FOLLOWING:

NTP?	No
IARC MONOGRAPHS?	No
OSHA REGULATED	No

12 – ECOLOGICAL INFORMATION

None available

NEUTRAPHIGH PLUS

NEUTRAPHIGH PLUS

13 – DISPOSAL CONSIDERATIONS

Any disposal practice must be in compliance with local, state and federal laws and regulations (contact local or state environmental agency for specific rules).

14 – TRANSPORTATION INFORMATION

DOT (Department of Transportation)	
UN NUMBER:	UN1824
DOT SHIPPING NAME:	Sodium Hydroxide Solution
HAZARD CLASS:	.8
PACKAGING GROUP:	.11
LABEL REQUIRED:	Corrosive

15 – REGULATORY INFORMATION

TSCA STATUS:ALL COMPONENTS OF THIS PRODUCT ARE LISTED IN THE TSCA INVENTORY OR EXEMPT.

SUPERFUND AMMENDMENTS AND REAUTHORIZATION ACT OF 1986 (SARA) TITLE III

Ingredients covered under the following sections:

CERCLA HAZARDOUS SUBSTANCE:Sodium Hydroxide, RQ = 1000 lbs.

SARA Toxic Chemical - SECTION 313 :..... None

16 – OTHER INFORMATION

HMIS Rating Scale: 0=Minimal 1=Slight 2=Moderate 3=Serious 4=Severe

PREPARED BY	MR
DATE OF PREPERATION	4/29/15
DATE OF LAST REVISION	8/24/10
PHONE NUMBER OF PREPARER	952-469-4965

DISCLAIMER:

The above information and recommendations are accurate to the best of our knowledge. However, the company assumes no liability for the accuracy or completeness of the information contained herein and disclaims all liability for the reliance thereon. All chemicals present unknown health hazards and should be used with caution. The user should satisfy himself by independent investigation that he has all current data relevant to his particular use.

UN – Unavailable NA – Not Applicable NE – Not Established

NEUTRAPHIGH PLUS

PAGE 4 of 4

LoopGuard 261

1 – PRODUCT IDENTIFICATION

PRODUCT NAME:LoopGuard 261

MANUFACTURER'S NAME:	International Chemtex Corporation
MANUFACTURER'S ADDRESS.	.952-469-4965
EMERGENCY PHONE NUMBER:	.(800) 424-9300 CHEMTREC
PRODUCT USE:	This product is designed for use in industrial, commercial or institutional water treatment systems. This product is

not for use in potable water systems.

2 – HAZARDS IDENTIFICATION

SIGNAL WORD: DANGER

POTENTIAL HEALTH EFFECTS:

H315: Causes skin irritation H335: May cause respiratory irritation H303: May be harmful if swallowed

H318: Causes serious eye damage

PRECAUTIONARY STATEMENTS:

P280: Wear protective gloves/protective clothing/eye protection/face protection.

P264: Wash thoroughly after handling.

P402+404: Store in a dry place. Store in a closed container.

P403+404: Store in a well ventilated place. Keep cool.

P321: Specific treatment (see First Aid Measures on Safety Data Sheet).

P285: In case of inadequate ventilation wear respiratory protection

LoopGuard 261

3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARDOUS INGREDIENT	PERCENT	CAS NUMBER
Sodium Hydroxide	>1	1310-73-2
Sodium Nitrite	20-40	7632-00-0

4 – FIRST-AID MEASURES

EYES:	Flush eves with abundant water for 15 minutes. Consult a
SKIN (DERMAL):	physician. Promptly remove contaminated clothes, Wash skin with
SWALLOWING (INGESTION):	soap and water. If irritation persists, consult a physician.
	possible. Call a physician.
BREATHING (INHALATION)	ventilated area. Get immediate medical attention if signs of suffocation, irritation or other symptoms develop.

5 – FIRE-FIGHTING MEASURES

EXTINGUISHING MEDIA:	Water Spray, Foam, Dry Chemical or CO ₂
HAZARDOUS DECOMPOSITION PRODUCTS:	.Gaseous nitrogen oxides
SPECIAL FIREFIGHTING PROCEDURES:	Wear full protective suit with self contained breathing
apparatus.	
UNUSUAL FIRE AND EXPLOSION DATA:	Material is an oxidizing agent when dried

6 – ACCIDENTAL RELEASE MEASURES

LEAK AND SPILL PROCEDURES:	Use specified protective equipment (see section8).
	Contain and absorb with inert material. Sweep up spill and reclaim or place in a covered waste disposal container.
	Wash area with water.
WASTE DISPOSAL:	Dispose of contaminated product via an approved.
	chemical waste disposal firm and in accordance with all
	federal, state and local regulations.

7 – HANDLING and STORAGE

HANDLING PROCEDURES AND EQUIPMENT:	Handle an open container with care. See section 8 for
	personal protection equipment. Avoid all skin contact and
	wash thoroughly after handling.
STORAGE REQUIREMENTS:	Store in a tightly sealed container in a cool, dry and well-
	ventilated area. Keep from freezing if at all possible.
SPECIAL CONSIDERATIONS:	In the event product is to freeze, thaw at room
	temperature then agitate prior to use.

LoopGuard 261

8 – EXPOSURE CONTROLS / PERSONAL PROTECTION

ENGINEERING CONTROLS:	Local exhaust
RESPIRATORY PROTECTION:	Ventilate adequately, otherwise wear an appropriate
	breathing apparatus.
PROTECTIVE GLOVES:	Chemical gloves (neoprene, nitrile, PVC, natural rubber).
EYE PROTECTION:	Face shield with chemical splash goggles.
ADDITIONAL MEASURES:	Wear suitable chemical resistant protective clothing.

9 – PHYSICAL / CHEMICAL PROPERTIES

PHYSICAL STATE:	Liquid
BOILING POINT:	212°F
FLASHPOINT:	None
AUTOIGNITION TEMP:	NA
UPPER EXPLOSION LIMIT (% BY VOL):	NA
LOWER EXPLOSION LIMIT (% BY VOL):	NA
VAPOR PRESSURE:	NE
VAPOR DENSITY (air=1):	NE
EVAPORATION RATE:	NE
SOLUBILITY IN WATER:	Complete
VOLATILITY INCLUDING WATER:	NE
pH:	6.5-9.5
SPECIFIC GRAVITY:	1.18-1.21
ODOR:	Slight odor
APPEARANCE:	Light Yellow - Yellow
	•

10 – STABILITY and REACTIVITY

CHEMICAL STABILITY:Stable HAZARDOUS POLYMERIZATION:Will not occur INCOMPATIBLE MATERIALS:Avoid strong acids and ammonium compounds HAZARDOUS DECOMPOSITION PRODUCTS:.....None known

11 – TOXICOLOGICAL INFORMATION

ROUTES OF ENTRY:

BY EYE CONTACT:	Possible
BY SKIN CONTACT:	Possible
BY SKIN ABSORPTION:	NA
BY INHALATION:	NA
BY INGESTION:	Possible
THRESHOLD LIMIT VALUE (UNITS):	NE
ACUTE OVER EXPOSURE EFFECTS:	Eye irritant. Risk of serious damage to eyes. Skin irritant.
CHRONIC OVER EXPOSURE EFFECTS:	Long term skin or eye contact may result in dermatitis or
	eye irritation (redness or swelling).

LoopGuard 261

CARCINOGENIC ACCORDING TO THE F	OLLOWING:
NTP?	No
IARC MONOGRAPHS?	No
OSHA REGULATED	No

12 – ECOLOGICAL INFORMATION

None available

13 – DISPOSAL CONSIDERATIONS

Any disposal practice must be in compliance with local, state and federal laws and regulations (contact local or state environmental agency for specific rules).

14 – TRANSPORTATION INFORMATION

DOT (Department of Transportation	n)
UN NUMBER:	NA
DOT SHIPPING NAME:	Non-hazardous
HAZARD CLASS:	NA
PACKAGING GROUP:	NA
LABEL REQUIRED:	Non-Corrosive

15 – REGULATORY INFORMATION

TSCA STATUS:ALL COMPONENTS OF THIS PRODUCT ARE LISTED IN THE TSCA INVENTORY OR EXEMPT.

SUPERFUND AMMENDMENTS AND REAUTHORIZATION ACT OF 1986 (SARA) TITLE III

Ingredients covered under the following sections:

CERCLA HAZARDOUS SUBSTANCE:Sodium Hydroxide, RQ = 1000 lbs Sodium Nitrite, RQ=100 lbs

SARA Toxic Chemical – SECTION 313 :..... None

16 – OTHER INFORMATION

HMIS Rating Scale: 0=Minimal 1=Slight 2=Moderate 3=Serious 4=Severe

LoopGuard 261

PAGE 4 of 5

LoopGuard 261

PREPARED BY	MR
DATE OF PREPERATION	5/26/15
DATE OF LAST REVISION	8/5/14
PHONE NUMBER OF PREPARER	952-469-4965

DISCLAIMER:

The above information and recommendations are accurate to the best of our knowledge. However, the company assumes no liability for the accuracy or completeness of the information contained herein and disclaims all liability for the reliance thereon. All chemicals present unknown health hazards and should be used with caution. The user should satisfy himself by independent investigation that he has all current data relevant to his particular use.

UN – Unavailable NA – Not Applicable NE – Not Established

Closed Loop Water Systems

A closed recirculating system is one in which the water is recirculated in a closed loop without evaporation or exposure to the atmosphere. The only make-up normally required is that needed to replace small water losses from leakage at pump packings (seals), expansion tank overflows, or surface evaporation from system vents.

These types of systems, though easy to treat, can cause serious problems if neglected. The most common problems are excess electrical costs as a result of lost heat transfer, and major downtime due to piping and heat exchanger leaks. A Midwest firm recently experienced a failure in a 2" pipe. The water that leaked from that failure destroyed a \$3 million dollar mainframe computer!

Many times these systems are neglected since leaks take time to develop, heat transfer efficiency isn't always easy to monitor and the internal system itself is not visible. With a little effort, proper precleaning and initial treatment, a new system can continue to give good service decades after it is installed. An existing system, dirty due to negligence, can often be restored to an acceptable working condition that is relatively problem free with minimal effort and expense.

New Systems

A preoperational cleaning of closed systems is recommended to remove contaminants before start up. With all areas open to flow, an alkaline cleaner should circulate for 24-48 hours to remove cutting oils and greases. The system should then be flushed (Federal, State and Local guidelines should be observed during the flushing or draining of any chemical(s) from a system). An appropriate chemical inhibitor, such as nitrite, molybdate or a combination of the two, should be added to sufficient levels to maintain corrosion protection.

If the new system contains excessive amounts of mill scale, an acid based cleaner would follow the alkaline cleaning.

Existing Systems

A water analysis should be performed to identify existing or future problems within the system. This analysis should include pH, conductivity, alkalinity, hardness, iron (and any metals specific to the system), sulfate, nitrate and ammonia. The specific corrosion inhibitor used should also be identified. If a freeze protection solution such as glycol is incorporated, a baseline analysis to include reserve alkalinity, freeze protection point and percentage glycol should be performed. With this information, a sound recommendation can be made as to the best course of action to prevent future problems or correct existing problems before they reach the point of failure.

If the analysis indicates past corrosion has occurred and is still on-going, it will be necessary to chemically arrest the problem and clean-up existing deposition and byproducts. A mild acid specifically designed for this application should be introduced to the system to slowly remove and clean the corrosion byproducts. After the chemical cleaning is complete, the solution should be flushed from the system (Federal, State and Local guidelines should be observed during flushing or draining of any chemical(s) from a system). When the entire residual chemical has been flushed from the system, an appropriate chemical inhibitor, such as nitrite, molybdate or a combination of the two, should be added to sufficient levels to maintain corrosion protection.
After chemical treatment is added to a system, a baseline water analysis should be performed. This analysis should include pH, conductivity, alkalinity, hardness, iron (and any metals specific to the system), sulfate, nitrate and ammonia, along with the specific corrosion inhibitor used. From then on, routine tests should include, at a minimum, pH, iron levels and chemical residuals. Many problems will manifest itself through one of these tests; then a more in depth analysis can be performed to help identify the source of the problem. By performing tests on a routine basis, many problems can be identified long before they progress to the point of failure.

It is also recommended that corrosion monitoring with the use of corrosion coupons be performed on a routine basis. This inexpensive method of corrosion monitoring can provide valuable insight as to system integrity. Side-stream filtration is often employed to maintain system cleanliness, especially with previously fouled systems. The unit should be sized to filter the entire volume of the system 5-10 times per day. The filter media should be appropriately sized to match the foulant. If the filter media is sized too small in the beginning, filters will plug often, causing not only a maintenance problem, but increased costs due to filter replacement.

Any closed system has the potential to become contaminated with microbes. These microbes can be introduced to the system in many ways. Whatever the cause, microbiological corrosion in a closed system can become a serious problem in a very short time and should be addressed immediately.

Various microbes will produce acidic by-products that will suppress pH and increase corrosion. Others can produce ammonia that will increase pH and cause corrosion. By establishing baseline data as previously mentioned, a determination can be made with good assurance as to the exact process taking place; thereby allowing proper adjustments in the treatment of the system to be made. If a closed system becomes contaminated with microbes, the system should be sanitized with a biocide. Isothiazalone and glutaraldehyde biocides have been shown to control most types of microorganisms found in closed systems. Chlorine dioxide is also highly effective in sanitizing closed systems, including critical applications. Filtration is also recommended in order to remove to the dead microbes which eliminates a source of nutrients in the system.

Sometimes it might be necessary to change treatment programs to help reduce microbial problems, i.e. replacing nitrite with molybdate to alleviate nitrifying bacteria problems.

This paper does not cover the subject of water treatment for closed systems in its entirety. It does contain some basic steps that will, under normal circumstances provide answers to most situations and allow for relatively trouble-free systems for years to come.

Glycol Treated Closed Loops

In recent years the industry has seen an increased use of glycol for freeze protection in many closed loop applications. Whether closed loop systems are completely filled with glycol and water or coils are just treated for protection; problems still occur in these systems.

INTERNATIONAL CHEMTEX CORPORATION

Three types of glycols have been used for closed loops. The two major types now used are Ethylene and Propylene. Automotive anti-freeze has also been used but is not recommended for this type of application.

Ethylene glycols are used for most HVAC applications. These glycols are used because they offer the most efficient heat exchange media. In general a 20% ethylene glycol solution will result in a 6% loss of heat transfer where as a 40% glycol solution will result in a 14.5% loss of heat transfer. Ethylene glycol should not be used where it could contaminate potable water, food processing or other products meant for human consumption.

Propylene glycol was developed to replace ethylene glycol where possible contact with potable water and food could occur. Propylene glycol does not have the heat transfer efficiency that ethylene glycol has. It also takes slightly more propylene glycol to provide the same freeze protection as ethylene glycol.

It should be realized that all glycols oxidize when exposed to air and heat. When this occurs an organic acid is formed. If not properly inhibited, this fluid is very corrosive. Inhibitors are added to the glycol to act as buffers preventing low pH attack on system metals. Certain types of inhibitors also passivate the metal surfaces protecting them from corrosion. These inhibitors can be tested for activity level with a basic test called Reserve Alkalinity. This test checks the buffering capacity of the inhibitor. If complete breakdown has not occurred fresh inhibitor can be added to restore corrosion protection.

Glycol based automotive anti-freeze is different because it is inhibited with silicates. This type of inhibitor is excellent for protection of aluminum at high temperatures and where an agitated environment is present. In a HVAC system where circulation is low and copper and steel are present, it can gel causing loss of heat transfer and system plugging. It is designed to be changed every three to four years which cannot be done in most HVAC systems.

Besides inhibitor breakdown, biological fouling can also occur. Bacterial slime will grow by feeding on the organic carbohydrates of the glycol. Certain inhibitors also provide nutrients for bacterial growth. Once a bacterial slime starts system corrosion will increase.

In systems where a glycol solution is maintained on a continuous basis an extra corrosion inhibitor such as borate-nitrite and molybdate should still be added. This extra protection will help prevent corrosion if basic inhibitor breakdown occurs. This system should be monitored for freeze protection, reserve alkalinity, inhibitor level and biological contamination on a routine basis.

In systems where coils need to be drained and glycol flushed through to protect low areas against freezing, more serious problems tend to occur. In most cases the main loop becomes contaminated with glycol that has broken down when spring startup occurs. Even if the glycol is properly inhibited at the start, exposure to air for 4 to 6 months will result in oxidation of the glycol. Not only will this glycol have broken down to form an organic acid but bacterial contamination is more likely. Before the spring start-up, each coil should be flushed with fresh water at least three times to remove as much of the residual glycol as possible. If the system is started up and glycol contamination occurs resulting in a low pH excursion and biological contamination, the system should be drained and flushed if possible. If this is not possible because of the size or design of the system further steps need to be taken. A by-pass filter system should be installed to remove the corrosion by-products. Filters as low as one micron maybe required to remove contaminants.

An appropriate biocide such as isothiazalone should be slug fed to provide biological control. The system pH should be gradually brought up to at least 8.5 with the addition of an alkalinity builder. If the pH is brought up too quickly or too high the iron in solution may precipitate and cause system plugging. Your corrosion inhibitor should be brought up to maximum strength. Continued monitoring is required to make sure recontamination doesn't occur.

Closed loop systems cannot be neglected. It is just as important that they be maintained corrosion and foulant free as it is with open condenser systems.

Iron Reducing Bacteria

Iron bacteria is a group of microorganisms found in industrial waters, streams, lakes, wells and potable water supplies. Recently, these organisms have gained recognition in the industry due to their effect on process equipment and finished products.

CHEMTEX INTERNATIONAL CHEMTEX CORPORATION

Iron bacteria is considered to be capable of withdrawing iron present in waters and depositing it, in the form of hydrated ferric hydroxide on or in their mucilaginous secretions. These large secretions, commonly referred to as slime, will impart an unpleasant odor to drinking water. As these microorganisms increase in number, the water may become more turbid, and the color of the water will turn "brick-red". Hence, the common reference of "red water".

In addition to discoloring the water, this group of microorganisms produces undesirable accumulations in pipes, nozzles, ponds, etc. These deposits will in time slough off and plug lines, foul pumps, valves and/or effect the quality of finished products. These bacteria oxidize ferrous ions to ferric, which is precipitated as ferric hydrate. Iron may be obtained from the pipe itself or from the water being carried. These bacteria may initiate pitting and tuberculation in iron pipes. They are partial to wells, or outfalls where water enters a stream. While these microorganisms are considered as aerobic, requiring oxygen to survive, they have been found to grow in waters with very low oxygen content.

The principal distinguishing characteristics between iron bacteria and other types of microorganisms is their ability to absorb and accumulate iron and/or manganese, when grown in environments which contain these elements. These organisms deposit iron and manganese salts around their cells which result in the characteristic reddish brown-black color. Iron bacteria are considered autotrophic (self-sufficient) organisms, oxidizing iron compounds as a source of energy. In general, the bacteria prefer lower temperatures but are known to grow at temperatures which range from 0-40°C, with an optimum temperature of 6-25°C. Their pH range for growth will vary from 5.5 to 8.2 with an optimum pH around 6.5. These organisms are not affected by light and have been found to grow in exposed areas, in shade as well as complete darkness.

Identification of iron bacteria is extremely difficult. While these organisms grow extremely well in recirculating water, laboratory attempts using usual cultural media methods have not been successful in the past. Therefore, it is not possible to evaluate the number of these organisms in water supplies with the usual bacteriological procedures. The satisfactory procedure for examining the population index of these organisms is direct microscopic analysis of the water after staining. This method also proves difficult due to difficulties in culturing large quantities for analysis.

Usually surrounded by a tubular "mucilaginous" sheath that hardens and becomes impregnated with ferric hydroxide, iron bacteria can be difficult to control. Chlorination has been used for control in bulk waters for many years; however, there are inherent drawbacks in the use of these products. High chlorine demand due to organic matter and iron levels has shifted the emphasis for control to the use of non-oxidizing biocides, such as quaternary ammonium compounds, as well as organo-sulfur compounds.

Appendix C

Water Treatment & Glycol Equipment Cuts [Chemical Filter Feeder & Glycol Feed Station]

By-Pass & Filter Feeders

By-Pass Feeders

Neptune By-Pass Feeders are a convenient method of introducing treatment chemicals into closed circulating water systems.

Neptune By-Pass Feeders are ideal for treating hot and chilled water circulating loops used in heating and air conditioning systems, process heating and cooling or large engine water jackets.

Neptune offers two styles of By-Pass Feeders: A vertical style with dish bottom in and a vertical style with dish bottom out.

Filters are available for system cleanup and monitoring.

A high pressure cap rated to 300 psi is now standard. The first closure improvement in over two decades.

FILTER FEEDER MODEL FTF-5DB

Neptune's FIRST Filter Feeder with Full Bottom Drain and Anchor Bolt Holes

Filter Feeders

The Neptune Filter Feeder combines chemical addition and high capacity filtering in one piece of equipment. It is a convenient way to introduce solid or liquid chemicals into hot or cold water closed circulating systems.

- Eliminates need for separate By-Pass Feeder and filter.
- Filtration can be achieved at the same time as chemical addition.
- Extended neck with top inlet allows simple installation of filter bag and basket.
- Filter bags are available in 50, 20, 5 and 1 micron ratings. (Order separately.)
- Filter bags are quickly and easily replaced.

BY-PASS FEEDERS - VERTICAL STYLE

DISH BOTTOM IN MODEL VTF-10HP DISH BOTTOM OUT MODEL DBF-SHP

By-Pass Feeders

All Neptune By-Pass Feeders offer the new style, quick opening, high pressure closure.

These closures offer better sealing with less force and eliminate the need for tools. Design binds cap

tightly when under pressure making it necessary to bleed pressure from tank before removing cap.

Underside of cap which contacts liquid is epoxy-coated.

OLD STYLE CAPS Three lug, ¹/₃ turn design rated to 200 psi.

NEPTUNE HIGH PRESSURE CAP Coarse thread, 2¹/₂ turn design rated to 300 psi.

Vertical Style – Dish Bottom Out

The "DBF" series features wide-mouth caps manufactured by Neptune. These caps utilize a square section "O" ring seal and will *close easily by hand.* Advantages of this series are demountable leg extensions and a **full bottom drain.** Optional Filter Bag Kit may be added.

"DBFC" models include a built-in

support and mounting for a cartridge filter (order cartridge separately).

See page 3 for filter specifications.

MODEL NUMBER	FILTER	APPROX. CAPACITY	MAX. PRESSURE*	Α	В	с	D	Е	F	SHIP WEIGHT
DBF-2HP	Optional†	2 Gallons	300 psi	31¼"	6"	12¾"	8%"	41/8"	13¼"	23 lbs.
DBFC-2	Cartridge	2 Gallons	300 psi	31¼"	6"	12¾"	8%"	41/8"	13¼"	23 lbs.
DBF-5HP	Optional†	5 Gallons	300 psi	29¾"	10"	10½"	8"	61/8"	13"	38 lbs.
DBFC-5	Cartridge	5 Gallons	300 psi	29¾"	10"	10½"	8"	61/8"	13"	38 lbs.
DBF-10HP	Optional†	10 Gallons	300 psi	45¾"	10"	26½"	8"	61/8"	13"	61 lbs.

*At 200°F Max + Filter support not included with base unit. Purchase optional filter bag kit.

Filter Bag Kits

Available for all "VTF" and "DBF" models up to 10 gallons. Kit includes bag, bag frame, tubing and connectors. The addition of a filter bag allows the By-Pass Feeder to function simultaneously as a side stream filter. (A clean bag is rated at approximately 30 microns.) Cannot be used with DBFC models.

VTF-2HP with filter bag kit installed

MODEL	FOR USE ON
FBK-2	VTF-2HP, DBF-2HP
FBK-5	VTF-5HP, DBF-5HP
FBK-10	VTF-10HP, DBF-10HP

(bag frame shown in front of bag for clarity only)

Vertical Style – Dish Bottom In

The **"VTF"** series is the most popular and economical of the by-pass feeders available from Neptune. The series uses the same wide

Specifications – All Models

- Working pressure: to 300 PSI max. at 200°F
- Tank shell:
 2 gallon unit 11 gauge steel
 5 gallon unit 10 gauge steel
 12 gallon unit 10 gauge steel
- Tank heads:
 2 gallon unit 11 gauge steel
 5 gallon unit 9 gauge steel
 12 gallon unit 9 gauge steel
- Cap: cast iron with Buna N "□" ring. Wide mouth, easy open/easy close.

Standard Models

MODEL NUMBER	FILTER	APPROX. CAPACITY	MAX. PRESSURE*	Α	В	с	SHIP WEIGHT
VTF-2HP	Optional†	2 Gallons	300 psi	21¼"	6"	12¾"	23 lbs.
VTF-5HP	Optional†	5 Gallons	300 psi	19¾"	10"	10½"	37 lbs.
VTF-10HP	Optional†	10 Gallons	300 psi	35¾"	10"	26½"	60 lbs.
VTF-12HP	N/A	12 Gallons	300 psi	42 "	10"	32¾"	68 lbs.

*At 200°F Max. + Filter support not included with base unit. Purchase optional filter bag kit.

_____ 1" NPT

Four Fitting Models

MODEL NUMBER	APPROX. CAPACITY	MAX. PRESSURE*	Α	В	с	SHIP WEIGHT
VTF-2X4HP†	2 Gallons	300 psi	21¼"	6"	12¾"	23 lbs.
VTF-5X4HP†	5 Gallons	300 psi	19¾"	10"	10½"	37 lbs.

*At 200°F Max. + No filter included with base unit. Purchase optional filter bag kit.

Cartridge Filter Units

"DBFC" models include a built-in support and mounting for a cartridge filter. (Order cartridge separately.)

Cartridge filter modification cannot be installed in DBF models; model DBFC must be ordered for use with cartridge filter.

	%" FNPT OUTLET
A	
	%" FNPT INLET

Feeder Bodies

MODEL NUMBER	APPROX. CAPACITY	MAX. PRESSURE*	Α	В	с	SHIP WEIGHT
VTF-2-1	2 Gallons	300 psi	20"	6"	12¾"	23 lbs.
VTF-5-1	5 Gallons	300 psi	18"	10"	10½"	37 lbs.

*At 200°F Max.

DBFC-5 with cartridge filter installed

PART NO.	DESCRIPTION				
107290	5 Micron Pleated Filter				
107287	20 Micron Pleated Filter				

Filter Feeders

Э

0

î

A

D

309

INLET

5/16" DIA. MOUNTING

HOLES

	MODEL NUMBER	APPROX. CAPACITY	MAX. PRESSURE*	DIAM.	CONN. SIZE	DIMENSIONS A B C	D
	FTF-2HP	2½ gals.	300 psi	6"	¾" FNPT	——— N/A ——	_
	FTF-2DB	2 gals.	300 psi	6"	34" FNPT	— N/A — 4¾" 8	31⁄2"
	FTF-2CL	2½ gals.	300 psi	6"	34" FNPT	5¾" 7" — N/A	
	FTF-5HP	7½ gals.	300 psi	10"	3/4" FNPT	——— N/A ——	_
	FTF-5DB	5 gals.	300 psi	10"	¾ ″ FNPT	— N/A — 5¼" 12	21/2 "
	FTF-5CL	7½ gals.	300 psi	10"	3/4" FNPT	10¾" 12" — N/A	
	FTF-5150HP	7½ gals.	300 psi	10"	11/2" FNPT	——— N/A ——	_
5	FTF-5150CL	7½ gals.	300 psi	10"	11/2" FNPT	10¾" 12" — N/A	

Feature

MODEL FTF-5HP

*At 200°F Max.

- Stainless steel dissolving basket holds and fully supports the filter bag inside (order bag separately).
- Ring-top bags feature handles for easy removal.
- "DB" type feeders have a full bottom drain and bolt on legs with anchor bolt holes.
- Model FTF-5150HP features oversize 1½" inlet and outlet connections. Can be used for system cleanup with high volume pumps where high flow rates are desired for fast clean-up or flush-out prior to start-up.
- "CL" Models feature a welded base to allow bolting to the floor or other mounting surface. Four holes for %" bolts are provided on each Anchor Bolt Plate.

See page 3 for specifications.

3½

3½" 4" FILL CAP INLET (FNPT) 31¾" REF 28¼" c OUTLET (FNPT) -

P.O. Box 247 • Lansdale, PA 19446-0247 Tel: 215-699-8700 • Fax: 215-699-0370 Toll-Free Tel: 1-888-3NEPTUNE (1-888-363-7886) Toll-Free Fax: 1-800-255-4017 Web Site: http://www.neptune1.com E-mail: pump@neptune1.com

ALL MODELS (except "DB" type)

SOLD BY:

MODEL FTF-2DB

Filter Bags

All bags fit any "FTF" model. **STEEL BASKET**

FILTER BAG

PART NO.	TYPE	QUANTITY	DESCRIPTION
107026	Ultra Fine	Pkg. of 1	1-micron ring-top bag
106453	Fine	Pkg. of 1	5-micron ring-top bag
107289	Medium	Pkg. of 1	20-micron ring-top bag
107231	Coarse	Pkg. of 1	50-micron ring-top bag

STAINLESS

Glycol Feed Systems

Purpose

Neptune Glycol Feeders are designed for the addition of glycol solution to closed loop chilled or hot water systems. The system automatically maintains pressure in the loop by adding glycol solution to make up for losses which occur due to leakage.

Glycol addition is controlled by a pressure switch with adjustable low and high set points.

Standard Pressure Switch: Cut-In Range: 10-45 PSI Cut-Out Range: 20-60 PSI Adjustable Differential: 10-30 PSI Other pressure switches available.

When the pressure in the loop reaches the low set point, the pump begins to feed glycol into the system until the high pressure set point is achieved and stops the pump.

Features

- 50 gallon polyethylene tank mounted in a steel frame
- Bronze rotary gear pump (1.5 gpm @ 100 psi)
- Float switch for low level pump shutoff and alarm
- NEMA 4X control panel

Panel includes:

- Hand-off-auto selector switch for pump motor
- Pump "on" indicator light
- "Low" tank level indicator light
- Dry contact for remote low level indication
- Power cord with plug, 115V 60C

Optional audible alarm and push button silence available. (Audible alarm is not watertight.)

MODEL G-50-1

Each Neptune Glycol Feeder is fully piped and wired with the following components:

Suction assembly includes:

- PVC tubing and fittings
- PVC ball valve
- Cast iron "Y" strainer

Discharge assembly includes:

- Schedule 40 brass pipe and fittings
- PVC ball valve Brass check valve Pressure gauge
- Brass relief valve with return to tank tubing

SELECTION CHART

MODEL	DESCRIPTION
G-50-1	Complete system including 1.5 gpm (@ 100 psi) pump and low level light.
G-50-1A	Complete system including 1.5 gpm (@ 100 psi) pump, low level light and audible alarm.
G-50-2A	Complete system including two 1.5 gpm (@ 100 psi) pumps, low level light and audible alarm. Separate discharges and pressure switches allow feeding two separate closed loop systems independently from a single tank.
LP	Option to furnish larger pump rated 3.75 gpm (@ 100 psi). Add "LP" to Model Number to specify larger pump; Example G-50-1-LP.
-	

SOLD BY:

P.O. Box 247 • Lansdale, PA 19446-0247 Tel: 215-699-8700 • Fax: 215-699-0370 Toll-Free Tel: 1-888-3NEPTUNE (1-888-363-7886) Toll-Free Fax: 1-800-255-4017 Web Site: http://www.neptune1.com E-mail: pump@neptune1.com

1/2" Y-STRAINER/CAST IRON

₽ X

© 2008 Neptune Chemical Pump Company All Rights Reserved Bulletin GLY-08 P/N ZL106837 Printed in U.S.A.

Appendix D

Air Cooled Chiller Equipment Cut [Daikin 375 Ton Unit]

PATHFINDER® Air-Cooled Screw Chiller

Job Information		Technical Data Sheet
Job Name	Needham High School -	Chiller Replacement
Date	3/6/2017	
Submitted By	Justin Thorpe	
Software Version	07.20	
Unit Tag	AWV030 - 375 tons - 12	EER - 21.4 IEER

Unit Overview

Model Number	Capacity ton	IPLV.IP* EER	Voltage	Unit Starter Type	ASHRAE 90.1	LEED EA Credit 4
AWV030A	375.0	21.40	46 <u>0</u> / 60.0 / 3	VFD	'07, '10, '13	Pass

* IPLV reflects AHRI standard rating conditions and may change with user defined conditions due to AWV product optimized configurability.

Unit													
	Unit	Туре				Platform		Unit Revision					
Air-	Cooled Screw C	Compressor Ch	iller			Packaged		00					
	Head P	ressure				Tub	ing						
	DC Fan Motors	s / All Fan VFD		No Liquid Solenoid Valves & No Suction Shut-off Valves									
			Dis	play									
			On Contr	oller only									
	Comp	ressor		Economizer									
	RF	RN		TTN									
	Refrigera	ant Type		Refrigerant Weight									
	R13	34a		615 lb (per unit)									
			Арр	roval									
			ETL/cETL, AHRI	& ASHRA	E 90.1								
		Evaporator											
Evaporator Modell:	EV6639A141	EV6639A1411											
Water Volume:	271.3 gal												
Connection Hand:	Grooved / Le	ft Hand											
Connection Size:	10.0 in												
Insulation:	Single Layer I	nsulation on E	vaporator										
Entering Fluid Temperature	Leaving Fluid Temperature	Fluid Type	Glycol Concentration	Fluid F	low	Fluid Flow (with glycol) Min / Max	Pressure Drop	Fouling Factor					
54.00 °F	44.00°F	Water & Propylene	35.0 %	965.4	gpm	281.1 / 1124.3 gpm	45.0 ft H₂O	0.000100 °F.ft².h/Btu					
			Cond	lenser									
Number of Fans:	30												
Coil Fins:	MicroChanne	el											
Guards:	Condenser Co	oil Wire Grilles	& Base Frame Wir	e Grilles									
Design Ambient Air Temperature	Altit	ude	Fan Diamete	er	Fai	n Motor Horsepower	Minimu Te	n Design Ambient emperature					
95.0 °F	0	ft	31.5 in	5 in 1.4 hp 32.				32.0 °F					

Unit Performance

							Design								
	(Capacity			Input I	Power		Efficie	ncy		IPLV.IP*				
	3	75.0 ton			374.	8 kW		12.00	EER		21.40 EER				
					Perfo										
			Un	it	Evaporator Cond										
Point #	% Load	Capacity	Input	Efficiency	Economizer	Compressor	Fluid Flow	Pressure	Entering	Leaving	Ambient	Altitude			
		ton	Power kW	EER	Status #1; #2	RPS #1; #2	gpm	Drop ft H₂O	Fluid Temperature °F	Fluid Temperature °F	Air Temperature °F	ft			
1	100.0	375.0	374.8	12.00	On; On	49; 46	965.4	45.0	54.00	44.00	95.0	0			
2	75.0	281.3	212.4	15.90	Off; Off	37; 35	965.4	45.0	51.50	44.00	80.0	0			
3	50.0	187.5	95.80	23.50	Off; Off	23; 22	965.4	45.0	49.00	44.00	65.0	0			
4	25.0	93.80	38.10	29.50	Off; Off	21	965.4	45.0	46.50	44.00	55.0	0			

* IPLV reflects AHRI standard rating conditions and may change with user defined conditions due to AWV product optimized configurability.

Sound Data (Internal Discharge Compressor Muffler with Sound Wrap on Discharge Line)																										
	Sound Pressure (at 30 feet)																									
% Load	1	63 d	Hz lb		125 H db	lz	25	5 0 Hz db		500 db	Hz)		1 kHz db		2 k d	t Hz b		4 kHz db	2	8	kHz db		Over a dBA	all		
100		7	'9		73			72		70)		69		6	4		57			48		73			
75		7	8		72			71		69)	67			60			54		4	46		71			
50		7	4		67			64		64	1		62		5	2		47			39		65			
25		7	1		63			61		61	L		58		4	8		43			35		62			
											Sound	l Powe	er													
% Load	I	63	Hz lb		125 H db	Iz	25	50 Hz db		500 db	Hz		1 kHz db		2 k d	t Hz b		4 kHz db	2	8	kHz db		Overa dBA	all		
100		1(06		100)		99		97	7		96		9	1		84			75		100)		
75		10	05		99			98		96	5		94		8	7		81			73		98			
50		10	01		94			91		91	L		89		7	9		74		66		66			93	
25		9	8		90			88		88	3		85		7	6		70			62		89			
									One	-third (Octave	Band	Sound	Powe	r											
% Load	50 Hz	63 Hz	80 Hz	100 Hz	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz	400 Hz	500 Hz	630 Hz	800 Hz	1 kHz	1.25 kHz	1.6 kHz	2 kHz	2.5 kHz	3.15 kHz	4 kHz	5 kHz	6.3 kHz	8 kHz	10 kHz		
100	105	93	86	94	91	97	94	96	92	92	91	94	92	89	93	88	85	83	82	78	75	74	68	62		
75	105	92	85	93	91	97	96	92	89	91	90	92	91	86	90	84	82	80	79	75	73	72	66	60		
50	101	87	81	89	85	91	89	85	83	85	85	88	87	80	82	76	74	73	72	68	66	64	60	55		
25 Octower ha	98	84	77	86	81	87	86	82	80	82	82	85	83	77	79	72	70	69 damad 7	68	64	62	60	56	51		

Physical				
		Unit		
Longth*	Unight	* ما ج ام ا	Chinning Maight*	Onerating Weight*
Length	neight	width	Shipping weight.	Operating weight
599 in	100 in	88 in	26110 lb	28374 lb
599 in	100 in	88 in	26110 lb	28374 lb

* Shipping and operating weights do not include the weights of any Options or Accessories. Contact Chiller Applications for additional information.

PATHFINDER® Air-Cooled Screw Chiller

Electrical				
		Unit Electrical Data		
Voltage	Starter Type	Fan Motor Quantity	LRA Fan Motor (each)	FLA Fan Motors (each)
46 <u>0</u> / 60.0 / 3	VFD	30	4A	2.6A
Power Connection Type:	Single Point Disconn	ect Switch with Circuit Protection	on	
Short Circuit Current Rating:	10 kA			
Drive Type(#1;#2):	CIMR-AU4A0515;CIN	/IR-AU4A0515		
Phase Voltage:	Phase & Under/Over	· Voltage Protection with LED		
		Single Point Power Connection		
MCA:	619 A			
Fuse Size (recommended):	700 A			
Fuse Size (maximum):	800 A			
Connector Wire Range:	(3) 2/0-400MCM			
		Compressor Electrical Data		
Compressor T	уре	Compressor Quantity		Starter Type
Screw		2		VFD
		Compr	essor #	
		1		2
RLA:		244 A	23	31 A
Inrush Current:		244 A	23	31 A

Note: Power wiring connections to the chiller may be done with either copper or aluminum wiring. Wire should be sized per NEC and/or local codes. Wire sizing and wire count must fit in the power connection lug sizing listed in latest installation manual. Please contact your local sales office for more information.

Options	
	Control
Communication:	BACnet MS/TP
	Electrical
Ground Fault:	Unit Ground Fault Protection
Unit Options:	115V Convenience Outlet
Water Flow Indicator:	Evaporator only (Thermal Dispersion)

Warranty Unit Startup Domestic Standard Warranty: 1st Year Entire Unit Parts & Labor Extended Compressor Warranty: Compressor Only; extended 4 years parts & labor

AHRI Certification

Certified in accordance with the AHRI Air-Cooled Water-Chilling Packages Using Vapor Compression Cycle Certification Program, which is based on AHRI Standard 550/590 (I-P) and AHRI Standard 551/591 (SI). Unit containing freeze protection fluids in the condenser or in the evaporator with a leaving chilled fluid temperature above 32°F [0°C] is certified when rated per the Standard with water. Certified units may be found in the AHRI Directory at www.ahridirectory.org.

NOTE: A water strainer must be installed at the inlet of the evaporator to protect it from damage. Please refer to the IOM for additional details.

Product Drawing	Unit Tag: AW	V030 - 375 ton	s - 12 EER -	Sales Office	: HTS New England (I	Boston)	- DAIKIN		
Product:	Project Name:	Needham High S	School - Chiller	Sales Engine	eer:				
Model: AWV030A	Mar. 06, 2017	Ver/Rev:	Sheet: 1 of 1	Scale: NTS	Tolerance: +/- 0.25"	Dwg Units: (in)	www.DaikinApplied.com	Software Version: 07.20	

No change to this drawing may be made unless approved in writing by Daikin Applied. Purchaser must determine that the equipment is fit and sufficient for the job specifications.

PROJECT COST INFORMATION

Estimated Project Costs - Feasik	oility Study						
Needham High School							
Needham, Massachusetts							
Feasibility Study Summary Shee	et						
Option	Bldg Sq Footage	Со	nstruction Cost	Co	ost per SF	F	Project Cost
Option B - Renovations Only	31,250	Ş	5,987,079	Ş	191.59	Ş	8,681,000
New construction	0						
Renovation	31,250						
Option C - Southwest Corner Addition	17.800	Ś	6.770.850	Ś	380.38	Ś	9.818.000
New construction	17.800	Ŧ	0,770,000	Ŧ		Ŧ	0,010,000
Renovation	0						
Option D - Courtyard Library	45,600	\$	15,370,544	\$	337.07	\$	22,287,000
New construction	8,000						
Renovation	37,600						
Option E - Webster Street Library	43,904	\$	12,068,998	\$	274.90	\$	17,500,000
New construction	11,154						
Renovation	32,750						
Option F - Webster Street Classrooms	19.400	Ś	7.863.620	Ś	405.34	Ś	11.402.000
New construction	18,400		· ·			-	
Renovation	1,000			-			
Chiller Deplecement Project:		ć	FC0 700			¢	769.000
		\$	569,796			Ş	768,000
Boiler Repairs & Optimization Project:	**	\$	99,454		**	\$	142,000
** Boiler	project costs includ	le op	otional work that	may	/ may not	be	included TBD

Estimated Project Costs - Feasibility Study							Upd	ated 4/13	/17
Needha	am High	School							
Needham	, Massach	usetts							
	-								
Option I	3 - Renov	vations C	nlv						
		1800	students						
		1000	Students		F	stmated			
		31.250	Sq Footage:	sa.ft.		Cost:	Con	nments:	
Constructi	on Costs:	-		•					
1	Site Develo	opment			Ş	-	Not	included	
2	Hazardous	Materials	Abatement		Ş	-			
3	Building De	emolition			Ş	-			
4	Constructi	on							-
		Area A-Ge	neral Renov	5,150	\$	360,923	\$	70.08	per sf
		Area B-Ge	neral Renov	1,500	\$	20,250	\$	13.50	per sf
		Area C-Exi	st Library	24,600	\$	4,390,200	\$	178.46	per sf
	Subtotal			31,250	\$	4,771,373	\$	152.68	per sf
	Escalation	to Mid-Poi	nt (5% PA)	5%	\$	238,569			
	CM @ Risk	Premium		5%	\$	238,569			
	Additional	escalation	time (5%)	5%	\$	238,569	For	invasive r	enovations
	Design and	d Pricing Co	ntingency				Incl	uded in co	onstr est.
	Constructi	on Phasing	Costs:		\$	500,000			
Total Cons	truction Co	ost			\$	5,987,079	\$	191.59	per sf
Project Co	ntingency:	(Construct	ion+ Owner)						
	Constructi	on			\$	598,708		10%	
	Owner				\$	299,354		5%	
Total Proje	ect Conting	ency			\$	898,062		15%	
Soft Costs	Owner's Pi	roject Mana	ager,						
	Arch/engir	neering, Ow	/ner direct,						
	Survey, Ge	otechnical,	Hazardous						
	Materials,	Printing, Le	egal, etc.						
Total Soft	Cost				\$	1,496,770		25%	
Fixtures Fu	urnishings a	and Equipm	nent (FF&E):						
Total FF&E		\$	299,354		5%				
Project Co	st Summar	y:							
	Constructi	on Costs			\$	5,987,079	\$	191.59	per sf
	Project Co	ntingency			\$	898,062			
	Soft Costs				\$	1,496,770			
	FF&E Cost	s		\$	299,354				
Estimated	Total Proje	ect Costs			\$	8,681,000			

Estimated Project Costs - Feasibility Study							Upd	ated 4/13	/17
Needha	am High	School							
Needham	. Massach	usetts							
Option (C - South	west Cor	ner Additio	n					
		1800	students						
			51440.115		F	stmated			
		17,800	Sq Footage:	sq.ft.	-	Cost:	Con	nments:	
Constructi	on Costs:								
					~	202 500			
1	Site Develo	opment	A la a t a una a unt		Ş	202,500			
2	Hazardous	Materials	Abatement		ې د	-			
3	Building De	emolition			Ş	-			
4	Construction		d/Popov	17 000	ć	5 271 000	ć	206 12	por cf
	Subtotal	Alea A-Au	u/ Kellov	17,800	ې د	5,271,000	ې د	290.12	persi
	Sublotal	to Mid Dai	ot (E% DA)	17,800	ې د	3,473,500	Ş	307.50	persi
		Dromium	III (5% PA)	5%	ې د	273,075			
		A Pricing Co	ntingonov	5%	Ş	275,075	Inc	ludad in c	anstr ost
	(4) Tompo	ry Classroo	m		ć	250.000	inc		
	(4) Tempo	on Phasing	Costs:		ې د	500,000			
Total Cons	truction Co		COSIS.		ې د	6 770 850	Ċ	380 38	nor sf
Total Colls					Ļ	0,770,030	ب	500.50	
Project Co	ntingency:	(Construct	ion+ Owner)						
110jeet eo	Constructio	on			\$	677 085		10%	
	Owner				ې د	338 543		5%	
Total Proj	ect Conting	ency		1	Ś	1.015.628		15%	
					•	1,010,010		20/0	
Soft Costs	Owner's Pi	roiect Mana	ager.						
	Arch/engir	neering, Ow	/ner direct,						
	Survey, Ge	otechnical,	Hazardous						
	Materials,	Printing, Le	egal, etc.						
Total Soft	Cost	0,		1	\$	1,692,713		25%	
Fixtures Fu	urnishings a	and Equipm	nent (FF&E):						
Total FF&	Cost			1	\$	338,543		5%	1
Project Co	st Summar	y:							
	Construction Costs				\$	6,770,850	\$	380.38	per sf
	Project Co	ntingency			\$	1,015,628			
	Soft Costs				\$	1,692,713			
	FF&E Cost	s			\$	338,543			
Estimated	Total Proje	ect Costs			\$	9,818,000			

Estimated Project Costs - Feasibility Study							Upo	lated 4/13	/17
Needh	am Higł	n Schoo							
Needham	n, Massach	usetts							
Option	D - Court	vard Lib	rarv						
		1800	students						
		1000	students		F	stmated			
		45.600	Sq Footage:	sa.ft.	-	Cost	Cor	nments:	
Construct	ion Costs:			• 4.1.0		0050			
1	Site Develo	opment			\$	-	Not	included	
2	Hazardous	Materials	Abatement		\$	-			
3	Building D	emolition			\$	-			
4	Constructi	on							
		Area A-Ge	neral Renov	7,250	\$	502,673	\$	69.33	per sf
		Area B-Ge	neral Renov	1,500	\$	75,735	\$	50.49	per sf
		Area C-Exi	st Library	24,600	\$	4,390,200	\$	178.46	per sf
		Area D-Ge	neral Renov	4,250	\$	503,550	\$	118.48	per sf
		Area E-Co	urtyard Libr	8,000	\$	7,458,750	\$	932.34	per sf
	Subtotal			45,600	\$:	12,930,908	\$	283.57	per sf
	Escalation	to Mid-Poi	nt (5% PA)	5%	\$	646,545			
	CM @ Risk	Premium		5%	\$	646,545			
	Additional	escalation	time (5%)	5%	\$	646,545	Inv	asive renc	vations
	Design and	d Pricing Co	ontingency				Inc	luded in c	onstr est.
	Constructi	on Phasing	Costs:		\$	500,000			
Total Cons	struction Co	ost			\$:	15,370,544	\$	337.07	per sf
Project Co	ntingency:	(Construct	ion+ Owner)						
	Constructi	on			Ş	1,537,054		10%	
	Owner				Ş	768,527		5%	
Total Proj	ect Conting	ency			Ş	2,305,582	1	15%	
C-4-C	0								
Soft Costs	Owner's Pi	roject Man	ager,						
	Arch/engir	neering, Ov	vner direct,						
	Survey, Ge	otechnical	, Hazardous						
Tabal Cafe	Materials,	Printing, Le	egal, etc.		<i>.</i>	2 0 4 2 6 2 6		250/	
Total Soft	COST				Ş	3,842,636		25%	
Total FER	urnisnings a	and Equipr	nent (FF&E):		ć	769 537		E0/	
Project Co	et Summer	·			Ş	/06,52/		5%	
Froject CO	Construct	y. on Costs			¢,	15 270 E <i>14</i>	ć	227 07	nor sf
	Project Co	ntingonov			э. ¢	2 205 502	ې ا	557.07	hei zi
	Soft Costs				ې د	2 847 676			
	FER Costs	s			ې د	762 577			
Ectimente	Total Drei	ort Costa			ې خ	122,007			

Estimated Project Costs - Feasibility Study							Upd	lated 4/13	/17
Needha	am High	School							
Needham	, Massach	usetts							
Option I	E - Webst	ter Stree	t Library						
-		1800	students						
			с г .		E	stmated			
		43,904	Sq Footage:	sq.ft.		Cost:	Con	nments:	
Constructi	on Costs:								·
1	Site Devel	onment					Not	included	
2	Hazardous	Materials	Abatement		Ś	-	NOL	included	
3	Ruilding Dr	emolition	Satement		ب ج	_			
J	Constructi	on			Ŷ				
	0011301 0001	Area A-Ge	neral Renov	5.150	Ś	360.923	Ś	70.08	per sf
		Area B-Ge	neral Renov	1,500	\$	55,485	\$	36.99	per sf
		Area C-Exi	st Library	24,600	\$	4,390,200	\$	178.46	per sf
		Area D-Ge	neral Renov	1,500	\$	179,820	\$	119.88	per sf
		Area E-We	bster Libr	11,154	\$	5,073,570	\$	454.87	per sf
	Subtotal			43,904	\$	10,059,998	\$	229.14	per sf
	Escalation	to Mid-Poi	nt (5% PA)	5%	\$	503,000			
	CM @ Risk	Premium		5%	\$	503,000			
	Additional escalation time (5%)				\$	503,000	For	invasive r	enovations
	Design and	d Pricing Co	ntingency				Inc	luded in co	onstr est.
	Construction	on Phasing	Costs:		\$	500,000			
Total Cons	truction Co	ost			\$:	12,068,998	\$	274.90	per sf
		(0							
Project Co	ntingency:	(Construct	ion+ Owner)		ć	1 200 000		1.00/	
	Construction	on			ې د	1,206,900		10%	
Total Broid	Owner	onev			ې د	1 910 250		5% ۱۵%	
		ency			Ş	1,010,330		10/0	
Soft Costs	Owner's Pi	roiect Man	ager.						
	Arch/engir	neering. Ow	/ner direct.						
	Survey, Ge	otechnical	Hazardous						
	Materials,	Printing, Le	gal, etc.						
Total Soft	Cost	_			\$	3,017,249		25%	
Fixtures Fu	urnishings a	and Equipm	nent (FF&E):						
Total FF&E	Cost				\$	603,450		5%	
Project Co	st Summar	y:							
	Constructi	on Costs			\$:	12,068,998	\$	274.90	per sf
	Project Co	ntingency			\$	1,810,350			
	Soft Costs				\$ ¢	3,017,249			
-	FF&E Cost	s			Ş	603,450			
Estimated	Total Proje	ect Costs			Ş	17,500,000			

Estimated Project Costs - Feasibility Study							Upd	ated 4/13	/17
Needh									
Needham	, Massach	usetts							
Option	F - Webst	ter Stree	t Classroom	S					
		1800	students						
			6 E t		E	stmated			
		22,500	Sq Footage:	sq.ft.		Cost:	Con	nments:	
Construct	ion Costs:								·
1	Site Develo	opment			\$	100,000			
2	Hazardous	Materials	Abatement		\$	-			
3	Building D	emolition			\$	-			
4	Constructi	on							
		Area A-Ge	neral Renov	1,000	\$	100,000	\$	100.00	per sf
		Area B-Ge	neral Renov	0	\$	-	\$	-	per sf
		Area C-Exi	st Library	0	\$	-	\$	-	per sf
		Area D-Ge	, neral Renov	0	\$	-	\$	-	per sf
		Area E-We	bster CR's	18,400	\$	6,494,200	\$	352.95	per sf
	Subtotal			19,400	\$	6,694,200	\$	345.06	per sf
	Escalation	to Mid-Poi	nt (5% PA)	5%	\$	334,710			
	CM @ Risk	Premium		5%	\$	334,710			
	Design and	d Pricing Co	ntingency			i	Incl	uded in co	onstr est.
Construction Phasing Costs:					\$	500,000			
Total Cons	struction Co	ost			\$	7,863,620	\$	405.34	per sf
Project Co	ntingency:	(Construct	ion+ Owner)						
-	Constructi	on			\$	786,362		10%	
	Owner				\$	393,181		5%	
Total Proj	ect Conting	ency			\$	1,179,543		15%	
Soft Costs	Owner's P	roject Mana	ager,						
	Arch/engir	neering, Ow	/ner direct,						
	Survey, Ge	otechnical,	Hazardous						
	Materials,	Printing, Le	egal, etc.						
Total Soft	Cost				\$	1,965,905		25%	
Fixtures Furnishings and Equipment (FF&E):									
Total FF&	E Cost				\$	393,181		5%	
Project Co	st Summar	y:							
	Construction Costs				\$	7,863,620	\$	405.34	per sf
	Project Co	ntingency			\$	1,179,543			
	Soft Costs				\$	1,965,905			
	FF&E Cost	s			\$	393,181			
Estimated Total Project Costs					\$:	11,402,000			

Estimated Project Costs - Feasibility Study							Upda	ated 4/13	/17
Needham High School									
Needham	Needham. Massachusetts								
Gymnas	sium 'A' F	Renovatio	on						
					Ε	stmated			
		9,500	Sq Footage:	sg.ft.		Cost:	Con	nments:	
Constructi	ion Costs:			•			1		
1	Site Develo	opment			(nc	one incl.)			
2	Hazardous	Materials	Abatement		(nc	one incl.)			
3	Building D	emolition			(nc	one incl.)			
4	Constructi	on			•	,			
		New Hardy	wood Floor	9,500	\$	285,000	\$	30.00	per sf
		New HVAC	RTU's	9,500	\$	120,000	\$	12.63	per sf
		New Lighti	ng	9,500	\$	60,000	\$	6.31	per sf
		Accoustic I	Panel System	9,500	\$	86,000	\$	9.05	per sf
		New Baske	tball Goals	9,500	\$	80,000	\$	8.42	per sf
	Subtotal			9,500	\$	631,000	\$	66.42	per sf
	Escalation	to Mid-Poi	nt (5% PA)	5%	\$	31,550			
	CM @ Risk	Premium		5%	\$	31,550			
	Design and	d Pricing Co	ntingency				Incl	uded in co	onstr est.
	Constructi	on Phasing	Costs:		\$	-			
Total Cons	struction Co	ost			\$	694,100	\$	73.06	per sf
-									
Project Co	ontingency:	(Construct	ion+ Owner)						
	Constructi	on			\$	69,410		10%	
	Owner				Ş	34,705		5%	
Total Proj	ect Conting	ency			Ş	104,115	1	15%	
Coff Cooto									
Soft Costs	Owner's P	roject iviana	iger,		ć	F0 207			
	Arch/engi	otochnical	Hazardous		Ş	(none incl.)			
	Materials	Drinting Le				(none incl.)			
Total A/F	Cost	Filling, Le	igal, etc.		Ś	59 397			
					7	33,337			
Fixtures Fi	urnishings a	and Equipm	ent (FF&E):						
Total FF&I		Ś	-		0%				
Project Co	st Summar	y:							
-	Construction Costs				\$	694,100	\$	73.06	per sf
	Project Co	ntingency			\$	104,115			
	Soft Costs				\$	59 <i>,</i> 397			
	FF&E Cost	s			\$	-			
Estimated	Total Proje	ect Costs			\$	858,000			

Estimated Project Costs - Feasibility Study							Updated 4/12	/17
Needham High School								
Needham,	Massachu	isetts						
Chiller Re	eplacem	ent Proje	ct					
	-	-			Es	stmated	_	
						Cost:	Comments:	
Constructio	on Costs:							
1	Site Devel	opment			\$	10,000		
2	Hazardous	Materials	Abatement			(none)		
3	Building D	emolition				(none)		
4	Constructi	on:						
		New air-co	oled chiller(s)		\$	450,000		
		(incl. pipin	g, electrical, pre	p., etc.)				
		Complete :	system flush &ti	reatment	\$	3,425		
		New filter	& Glycol feed sy	vstems	\$	9,550		
		Glycol mat	erial (aprx. 5,00	0 gal)	\$	22,500		
	Subtotal				\$	495,475	1	
	Escalation	to Mid-Poi	nt (5% PA)	5%	\$	24,774		
	Design and	d Pricing Co	ntingency	5%	\$	24,774		
	Construction Phasing Costs:				\$	-		
Total Const	ruction Co	st			\$	545,023	1	
Project Con	tingency:	(Construct	ion+ Owner)					
	Constructi	on			Ş	54,502	10%	
	Owner				Ş	27,251	5%	
Total Projec	ct Continge	ency			Ş	81,753	15%	
Cafe Casta								
SOIT COSTS:	Arobitest (Cost ostimatin -	CA faces		¢20.000		
		rivi, specs,	il Engineering f	, CA lees:		\$38,000 \$61,000		
	IVIER / SUL	voioct Mana	a chgineering te			001,50U	E0/	
	Commissie	oject ividila	gement.			\$24,774	5%	
Site Survey (if required - TPD)						ېر د د عور		
Total Soft Cost Cost					Ś	137.054	 	
					Y	107,004		
Project Cos	t Summarv	':						
Construction Costs					\$	545.023		
	Project Contingency					81.753		
	Soft Costs	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>			\$	137,054		
Estimated 1	otal Projec	ct Costs			Ś	764 000		

Estimated Project Costs - Feasibility Study							Updated 4/12	/17
Needha	m High	School						
Needham,	Massachu	isetts	· · · · · · · · · · · · · · · · · · ·					
Boiler Re	pair & H	eating Sy	/stem Optim	ization Proj	ect			
					Est	tmated		
						Cost:	Comments:	
Constructio	on Costs:							
1	Site Devel	opment				(none)		
2	Hazardous	Materials	Abatement			(none)		
3	Building D	emolition				(none)		
4	Constructi	on:				· ·		
 I	a.	Install new	gas 'train':		\$	-	by utility co.	
 I	b.	Complete s	system flush, tre	eatment:	\$	3,425	, ,	
 I	с.	Filter syste	m, Media, Chen	nical Feed	, \$	1,715		
 	d.	Install add	l make-up air or	pening incl.	, \$	30,000		
 I	-	louvers, dı	icting, masonry			,		
 I	e.	New CO se	nsor w/ remote	indicator	\$	2,500	none exst.	
	f.	New conne	ected data loggi	ng	, \$	10,000	also includes	periodic
		gas pressu	re / flow meter				aas sample te	sting
	g.	New DHW	Heater:		\$	10,000	<u> </u>	
	h.	Install pres	sure gauges at (each boiler	\$	5,500		
	Subtotal			\$	63,140			
	Optional C	ontrols Up	grades		\$	30,000	see options 1	a & 1b
 	Escalation	to Mid-Poi	nt (5% PA)	5%	\$	3,157		
	Design and	Design and Pricing Contingency				3,157		
	Constructi	on Phasing	Costs:		\$	-		
Total Const	ruction Co	st			\$	99,454		
Project Con	tingency:	(Construct	ion+ Owner)					
	Constructi	on			\$	9,945	10%	
	Owner				\$	4,973	5%	
Total Proje	ct Continge	ncy			\$	14,918	15%	
Soft Costs:								
	Architect F	PM, Specs,	Cost estimating	, CA fees:		\$11,000		
	MEP Engin	eering fees	:			\$16,200		
Total Soft C	ost Cost			1	\$	27,200		
Project Cos	t Summary	:			<u>^</u>	00 45 4		
	Construction Costs					99,454		
	Project Co	ntingency			\$	14,918		
	Soft Costs				Ş	27,200		-
Estimated 1	Fotal Proje	ct Costs			\$	142,000	**	
(** Boiler O	ptimization	Project cost	range = \$109k - \$	142k pending fir	nal op	tions select	ed (see next pag	(e))

(Boiler Optimization cont.)			
Option 1a: (incl. engineering & trades work)	\$	15,000	
Option: Review EXISTING boiler control panel, programming, and / or internal components;			
repair, reset, connect and configure to function			
properly with Needham BMS.			
Option 1b: (incl. engineering & trades work)	\$	30,000	
Option: Install NEW boiler control panel; connect and configure to optimize function fully with Needham BMS			

APPENDIX

- SCHEDULE K-1.0
- PRESENTATION K-2.0
- UTILIZATION WORKSHEETS K-3.0
 - McKIBBEN REPORT K-4.0
 - SCHOOL DISTRIC MAP K-5.0

FEASIBILITY STUDY TIMELINE

FEASABILITY STUDY TIMELINE

DECEMBER – DATA GATHERING AND ANALYSIS

- 12/06/16 Working Group Meeting Review of Schedule, Utilization Analysis Progress, Survey Strategies
- 12/20/16 Working Group Meeting Analysis Progress, Enrollment Target

JANUARY – NEEDS IDENTIFICATION

1/05/17D&W Complete Structural Facility Assessment1/10/17Working Group Meeting
Questionnaires due back to D&W1/17/17Working Group Meeting
Report out on questionnaires1/31/17D&W Complete MEP/FP Facility Assessments1/31/17Working Group Meeting
Initial Presentation of Space Needs and Facility Needs

FEBRUARY - NEEDS CONFIRMATION

2/13/17	PPBC Presentation <i>Update of progress, analysis, initial space & facility needs</i>
2/14/17	Working Group Update of progress, analysis, initial space & facility needs
2/27/17	PPBC Presentation With preliminary costs – define the need, provide the options, give range of cost – what happens if we do nothing?
2/28/17	Working Group / Task Force With preliminary costs – define the need, provide the options, give range of cost – what happens if we do nothing?

MARCH – OPTIONS DEVELOPMENT

3/13/17	PPBC Presentation Review further costs refinement
3/14/17	Working Group Review of options
3/20/17	Task Force Presentation of space needs, facility needs, options narrative
3/21/17	School Committee Presentation of space needs, facility needs, options narrative
3/27/17	School Committee / PPBC joint meeting Presentation of options and Comparative Cost Estimates

APRIL – OPTIONS REFINEMENT & COST

4/10/17	School Committee / PPBC joint meeting
	Presentation of Final Option and Cost
4/17/17	Delivery of Final Draft Report

4/25/17 District to Return any Edits to the Report

MAY – REPORT PUBLICATION AND TOWN VOTE

- 5/01/17 PPBC: May Town Meeting
- 5/08/17 D&W to deliver FINAL REPORT
- 5/08/17 D&W to start Phase II Schematic Design

FINAL PRESENTATION

The following Power Point presentation was given at the Joint School Committee / PPBC meeting on 27 March 2017, in the Public Library large meeting room.

Scope of Work

- Conduct Educational Analysis to Determine Space Needs Utilization, Schedule, Program & Existing Space
- Develop Options to Meet Needs
- Develop Cost Estimates of Options
- Evaluate Options to Determine Preferred Options

<u>Agenda</u>

- Space Needs Analysis
- Options
- Review of Cost Estimates
- Evaluation of Options

Analytical Scope

- Review Enrollment Projections and Determine an Enrollment Target
- Review utilization, schedule, & program to determine if / how many additional classrooms are required to meet enrollment target

Planning & Programming Tasks

- Develop an Understanding of Programs & Services
- Develop an Understanding of Schedule & Section Caps
- Interview Special Education Department
- Deep Dive Analyze every space where instruction occurs
 - Utilization
 - Students Per Section
- Survey Faculty & Staff about Perceived Needs
- Determine if Spatial Needs Exist Today
- Project Course Offerings and Schedule into the Future
- Determine if Spatial Needs Exist in the Future

Core Academic, Key Findings

Math, English, Social Studies and World Languages

Average Utilization Rate = 90%

Average Students Per Section = 20.88

Total Sections w/ Students ≥23 = **147** or **45%**

Total Sections w/ $16 \le$ Students < 23 = 132 Or 40%

Total Sections w/ Students <16 = 50 or 15%

329 Sections @85% = 55 Classrooms, 52 Existing

Solutions Toolkit

- More students per section on average
 - Educational decision to cap certain course offerings to best serve students
- Higher utilization per room
 - Core academic already over 90%
 - Improve utilization at fine & performing arts... might limit access to students and not attractive geographically
- Fewer sections to increase students per section
 - Might result in less access to students because of specialty conflicts
- Increase the number of classrooms

Space Summary Goals:

Core Academic Space Needs

- (6) 925 NSF Classrooms
- (2) 1,200 NSF Classrooms
- (1) 1,640 NSF Science Lab w/ Prep Area

(8+1) Total: 7,940 NSF

Special Education Space Needs

Classrooms, Life Skills, Small Group, Testing Rooms 120 NSF – 750 NSF Expanded Department Office Space

Total: 5,500 NSF

Collaboration Space(s)

In addition to existing

- As Options Allow
- Some Noisy
- Some Quiet
- Some Open
- Some Closed
- Lots of vertical writing surface
- Access to Wifi
- Access to Digital Display
- Some Hard Furnishings
- Some Soft Furnishings
- Highly Mobile Furnishings
- Food Friendly

GABLE END DORMERS

<section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item>

Building Option C Net gain: • (1) Science + Prep GAINS LOSSES + 2 @ 1,640 sf - 1 @ 1440 sf • (6) Classrooms GAINS LOSSES + 9 @ 925 sf - 1 @ 900 sf - 2 @ 750 sf • (3) Special Ed. Classrooms GAINS LOSSES + 3 @ 925 sf none • (4) Collaboration Spaces

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item>

Building Option D Net gain: • (1) Science + Prep GAINS LOSSES + 1 @ 1,640 sf none • (8) Classrooms GAINS LOSSES + 5 @ 750 sf - 8 @ 750 sf + 2 @ 800 sf + 6 @ 950 sf + 3 @ 1200 sf • (3) Special Ed. Classrooms GAINS LOSSES + 3 @ 750 sf none • (1) Collaboration Spaces

Building Option D

Constraints:

- Multiple areas impacted
- Multiple phases necessary
- Construction Access
- Reduced size Media Center
- Reduced Departmental Offices

Opportunities:

- Create Central Media Center
- Classrooms in Core Area

19

Building Option E Net gain: • (1) Science + Prep GAINS LOSSES + 1 @ 1,440 sf none • (8) Classrooms GAINS LOSSES + 2 @ 750 sf - 3 @ 750 sf + 2 @ 800 sf + 4 @ 950 sf + 3 @ 1200 sf • (5) Special Ed. Classrooms GAINS LOSSES + 3 @ 750 sf none + 2 @ 950 SF • (1) Collaboration Spaces

<section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item>

Building Option F Net gain: • (1) Science + Prep GAINS LOSSES + 1 @ 1000 sf none • (8) Classrooms GAINS LOSSES +7 @ 925 sf - 1 @ 925 +2 @ 1200 sf • (4) Special Ed. Classrooms GAINS LOSSES + 2 @ 725 sf none + 2 @ 925 sf + 1 @ 1100 sf • (2) Collaboration Spaces

<section-header>**Building Option F Construction Access / Impact at Webster St. Parking Lot Opportunities:**• No impact on Media Center • Single major phase • Few areas impacted

		in the second			Charles	D LOCK		NTI (MICHID)		
	-	-	nd car	Dept	STR. 5	of car	trat	ate estate	bor	SONS SONS
	OPTION B	2	1,200		0 5	1,200		3 1,200		CLASSROOMS 8 52%
-	(internal renovations at	2	925	CLASSROOMS	0 5	85	CLASSROOMS	3 925	CLASSROOMS	SCL + PREP 1 500%
	Media Center area(s) anly)	1	250		2 2	725		-2 725-750		SPICIALED. 5,500 SF 275
	_	2	4,728		2 2	2,175		4 2,553	TOTAL CLEMS	CONSTRAINTS
	-	2	250	SPECIAL EDUCATION	0 0	0	SPECIAL EDUCATION	2 750	SPECIAL EDUCATION	Extensive Construction w/in Building
	\$8.6m	2	1,500	C C M 10 - 10 - 10 C	0 0	0	COTINET LAB - BATA	2 1,500	TOTAL SPECIAL ED.	Reduced / Remote Media Center
	-	1	1640	CENT DE TRE			CENCE CRETTREP	1 1640	TOTAL STLAPPER	Topology writes
	-	1	2500	COLLABORATION	0 0	0	COLLABORATION	1 2500	COLLARORATION	Renovations Only
	-	1	2500		0 6	0		1 2500	TOTAL COLLABORATION	
			10,368.00	TOTAL ADD SQ. FT.		2,175.00	TOTAL LOST SQ. FT.	8,199.00	TOTAL SQ. FT.	
	OPTION C	PACE	(S) ADDED:		SPACE	(S) LOST:		NET SPACE(S)		ADDITIONAL CONSIDERATIONS
	All second and delivery	42	1 200	101	67. 5	1 200	10*	0 1 200	O ASSROOMS	Contraction of the second seco
	(control decision		125	CLASSROOMS	1 1	800	CLASSROOMS	8 925-900		K1 + 950 1 100%
	at SW corner)	0	250		2 7	750		-2 750		SPICIAL ED. 5,500 SF 50%
			1,225		2 2	2,400		6 5,825	TOTAL CLRMS	CONSTRAINTS
		2	825	SPECIAL EDUCATION	٥		SPECIAL EDUCATION	3 925	SPECIAL EDUCATION	Tempoary Classrooms Needd
	50 A-	2	2775		0 0	0		2 2,775	TOTAL SPECIALED.	Impact to Adjacent Classrooms
	59.8m	2	1,540	SCENCE LAR	1 1	1,640	SCENCE CAR	1 1,640	NUTAL S LAU + PREP	Impact to Adjocent site Area
		1	1.000	COLLABORATION	0		COLLABORATION	4 1.000	COLLARGRATION	Single Phase Construction
		4	6,000	A CONTRACT OF	0 0	0	and a state of the	4 4,000	TOTAL COLLABORATION	
					— "					
			18,190.00	TOTAL ADD SQ. FT.	<u> </u>	2,840.00	TOTAL LOST SQ. FT.	\$4,340.00	TOTAL SQ. FT.	
		NET S	PACE(S) ADD	60:	NETSPA	wce(s) roz	n	NET SPACE(S)	-	ADDITIONAL CONSIDERATIONS
		49	1000	Sub4	64. 5	62124	type	274 347 KDP	1,604	GONIS
	d Courtured	6	1,000		0.0	160		6 950		CLASHDONS 8 SIDTS
		2	800	CLASSROOMS	0.5	800	CLASSROOMS	2 800	CLASSROOMS	George Constant
	-	5	250		8 2	750		-3 750		CONSTRAINTS
		36	14,650			6,000		8 8,650	TOTAL CLEMS	Multi-phased Construction
	\$22.3m	3	250	SPECIAL EDUCATION	0	0	SPECIAL EDUCATION	3 750	SPECIAL EDUCATION	Extensive Construction w/in Building
	_	2	2250		0 4			3 2,250	TOTAL SPECIAL ED.	Reduced Media Sze
	-	1	1,660	SCIENCE LAB	0 0	0	SCIENCE LAB	1 1,640	SCIENCE LAB	Reduced Department Offices
		1	2,660	COLLABORATION	0.0		COLLABORATION	1 2 500	TOTAL SCI. + PREP	Considered Advided Constant
		4	2,500		0.0			4 2,500	TOTAL COLLABORATION	
	-			•	<u> </u>					
			21,040.00	TOTAL ADD SQ. FT.	-	6,000.00	TOTAL LOST SQ. FT.	15,040.00	TOTAL SQ. FT.	
	-	NET S	PACE(S) ADD	60:	NETSP	wcs(s) ups	ar.	NET SPACE(S)	1	ADDITIONAL CONSIDERATIONS
	OPTION E	47	1 200	7194	67. 4	1 200	Type	2 1 200	164	Contraction of the second seco
	Incue Martin Canter	4	150	1	0.1	160		4 950		
	at Webster St. Entry)	2	800	CLASSROOMS	0 8	800	CLASSROOMS	2 800	CLASSROOMS	SPECIALED. 5,500 SF 75%
		2	9		2 2	%0		-1 750		CONSTRAINTS
	_	11	10,500		2 2	2,250		8 8,250	TOTAL CLRMS	Extensive Construction w/in Building
	-	2	450	SPECIAL EDUCATION	0 0	2	SPECIAL EDUCATION	2 950	SPECIAL EDUCATION	Multi Phase
		5	4150		0			5 4,164	TOTAL SPECIAL ED.	Construction impact to built loop in parting
	\$17.5m	1	1,600	SCIENCE LAR	0 0	0	SOENCE LAR	1 1,640	SCIENCE LAB	DPPORTUNITIES
		1	1,640		0 0	6		1 1,640	TOTAL SCI. + PREP	New Media Center
	_	1	0,500	COLLABORATION	0.0	6	COLLABORATION	1 2,500	COLLARORATION	Centeralized Classrooms
		1	2,500		0 0	0		1 2,500	TOTAL COLLABORATION	Improved Admin. Connection
			18,790,04	TOTAL ADD SO ST	I	2,350.44	TOTAL LOST SO ST	16.541.44	TOTAL SO. FT.	
					1					
		NET 2	PACE(S) ADD	60:	NETSP	wcs(s) LOS	an .	NET SPACE(SE		ADDITIONAL CONSIDERATIONS
		44	est car	5194	64. 4	of see	Type	454. extaine	tore	GONIS
	OPTION F	2	1,200		0 5	1,200		2 1,200		CLASSROOMS 8 300%
	(nrw Clauroam Wing	2	25	CLASSROOMS	1	85	CLASSROOMS	6 925	CLASSROOMS	SCL+PREP 1 200%
	at Webster St. Entry)	°	125		0 2	40	-	d 725	TOTAL CLEAR	EPICIAL ED. 5,500 SF (80%)
		x	100		1 2 3	1100		4 7,990	INFINE CLIMAS	CONSTRAINTS
		2	125	SPECIAL EDUCATION	0.0	85	SPECIAL EDUCATION	2 925	SPECIAL EDUCATION	Construction impact to building astrong
		2	225		0 2	725	1	2 725		
		4	4400		0 0			4 4,400	TOTAL SPECIAL ED.	OPPORTUNITIES
	\$11.4m	1	1,000	SCIENCE LAB	0 0	0	SCIENCE LAB	1 1,000	SCIENCE LAB	Improved Admin. Connection
	_	1	1,000		0.0	0		1 1,000	TOTAL SCI. + PREP	Reduced impact during construction
	-	2	100	COLLABORATION	0.0	2	LOLLARCHATION	2 800	COLLANDRATION	
					1 . 1			* p,600	TOTAL COLLABORATION	
			15,875.00	TOTAL ADD SQ. FT.		925.00	TOTAL LOST SQ. FT.	\$4,950.00	TOTAL SQ. FT.	

Comparative Matrix													
	SPAC			SPAC	F(S) LOST:		NET SDACE(S)-						
-	gty.	nsf size	type	gty.	nsf size	type	qty.	nsf size	type	Abbillio	GOALS	SERATIONS	
OPTION B	3	1,200		0	1,200		3	1,200		CLASSROOMS	8	50%	
(internal renovations at	3	925	CLASSROOMS	0	925	CLASSROOMS	3	925	CLASSROOMS	SCI. + PREP	1	100%	
Media Center area(s) only)	1	1 750		3 725		1	-2	725-750		SPECIAL ED.	5,500 SF	27%	
	7	4,728		3	2,175		4	2,553	TOTAL CLRMS	CONSTRAINTS			
	2 750 2 1,500		SPECIAL EDUCATON		0	SPECIAL EDUCATON	2	750	SPECIAL EDUCATON	Extensive Construction w/in Building			
\$8.6m				0	0		2 1,5	1,500	TOTAL SPECIAL ED.	Reduced / Remote Media Center			
¢0.0111	1	1,640	SCIENCE LAB + PREP	0	0	SCIENCE LAB + PREP	1	1,640	SCIENCE LAB + PREP	Reduced Department Of		e	
	1	1640		0	0		1	1640	TOTAL SCI. + PREP	OPPORTUNITIE	s		
	1	2500	COLLABORATION	0	0	COLLABORATION	1	2500	COLLABORATION	Renovations O	nly		
-	1	2500		0	0		1	2500	TOTAL COLLABORATION				
		10 368 00	TOTAL ADD SOLET		2 175 00	TOTAL LOST SO FT		8 193 00	TOTAL SO FT				

Comparative Matrix												
	NET	SPACE(S) AD	DED:	NET	SPACE(S) LOS	л :	NET	SPACE(S):		ADDITIO	NAL CONSI	DERATIONS
	qty.	nsf size	type	qty.	nsf size	isf size type		nsf size type			GOALS	
OPTION F	2	1,200		0	1,200		2	1,200		CLASSROOMS	8	100%
(new Classroom Wing	7	925	CLASSROOMS	1	925	CLASSROOMS	6	925	CLASSROOMS	SCI. + PREP	1	100%
at Webster St. Entry)	0	725		0	725		0	725		SPECIAL ED.	5,500 SF	80%
	9	8,875		1	925		8	7,950	TOTAL CLRMS	CONSTRAINTS		
	1	1 1,100 2 925	SPECIAL EDUCATION	0	1,100		1	1,100	SPECIAL EDUCATION	Construction impact to bus loop & parl		
	2			0	925	SPECIAL EDUCATION	2	925		Construction impact to building entr		uilding entrance
	2	725		0	725		2	725				,
	4	4400		0	0		4	4,400	TOTAL SPECIAL ED.	OPPORTUNITI	ES	
\$11.4m	1	1,000	SCIENCE LAB	0	0	SCIENCE LAB	1	1,000	SCIENCE LAB	Improved Adr	nin. Connec	tion
	1	1,000		0	0		1	1,000	TOTAL SCI. + PREP	Reduced impa	ct during co	nstruction
	2	800	COLLABORATION	0	0	COLLABORATION	2	800	COLLABORATION			
	1	1,600		0	0		1	1,600	TOTAL COLLABORATION			
		15,875.0	D TOTAL ADD SQ. FT.		925.00	TOTAL LOST SQ. FT.		14,950.00) TOTAL SQ. FT.			

McKIBBEN REPORT

Needham Public Schools, MA Demographic Study

January 2017

Table of Contents

Executive Summary	1
Introduction	2
Data	3
Assumptions	3
Methodology	6
References	8
Appendix A: Population Forecasts	9
Appendix B: Enrollment Forecasts	15

Executive Summary

- 1. The resident total fertility rate for Needham Public Schools over the life of the forecasts is below replacement level. (1.87 vs. the replacement level of 2.1)
- 2. Most in-migration to the district continues to occur in the 0-to-9 and 30-to-44 year old age groups.
- 3. The local 18-to-24 year old population continues to leave the district, going to college or moving to other urbanized areas. This population group accounts for the largest segment of the district's out migration flow.
- 4. The primary factor causing the district's enrollment to slightly decline over the next 15 years is a substantial increase in the number of empty nest households (home owners age 70+) "turning over", however this will still be smaller than the number of homes (homeowners age 50-59) that also become empty nest households.
- 5. Changes in year-to-year enrollment over the next five years will primarily be due to the size of the grade cohorts entering and moving through the school system in conjunction with the size of the cohorts leaving the system.
- 6. The elementary enrollment will begin a slight decline after the 2021-22 school year. This will be due primarily to the fact that the rising 5th grade cohorts will be greater the 400 in size while the incoming grade cohorts will decline slightly.
- 7. The median age of the population will increase from 42.9 in 2010 to 43.9 in 2030.
- 8. Even if the district continues to have some of annual new home construction (even if that construction is rental units), the rate, magnitude and price of existing home sales will become the increasingly dominant factor affecting the amount of population and enrollment change.
- 9. Total district enrollment is forecasted to increase by 108 students, or 1.9%, between 2016-17 and 2021-22. Total enrollment is forecasted to decline by 138 students, or -2.4%, from 2021-22 to 2026-27. The total enrollment is forecasted to decline by 172 students, or -3.1%, from 2026-27 to 2031-32.

INTRODUCTION

By demographic principle, distinctions are made between projections and forecasts. A projection extrapolates the past (and present) into the future with little or no attempt to take into account any factors that may impact the extrapolation (e.g., changes in fertility rates, housing patterns or migration patterns) while a forecast results when a projection is modified by reasoning to take into account the aforementioned factors.

To maximize the use of this study as a planning tool, the ultimate goal is not simply to project the past into the future, but rather to assess various factors' impact on the future. The future population and enrollment changes for each school district are influenced by a variety of factors. Not all factors will influence the entire school district at the same level. Some may affect different areas at dissimilar magnitudes and rates causing changes at varying points of time within the same district. The forecaster's judgment, based on a thorough and intimate study of the district, has been used to modify the demographic trends and factors to more accurately predict likely changes. Therefore, strictly speaking, this study is a forecast, not a projection; and the amount of modification of the demographic trends varies between different areas of the district as well as within the timeframe of the forecast.

To calculate population forecasts of any type, particularly for smaller populations such as a school district, realistic suppositions must be made as to what the future will bring in terms of age specific fertility rates and residents' demographic behavior at certain points of the life course. The demographic history of the school district and its interplay with the social and economic history of the area is the starting point and the basis of most of these suppositions particularly on key factors such as the age structure of the area. The unique nature of each district's and attendance area's demographic composition and rate of change over time must be assessed and understood to be factors throughout the life of the forecast series. Moreover, no two populations, particularly at the school district, have exactly the same characteristics.

The manifest purpose of these forecasts is to ascertain the demographic factors that will ultimately influence the enrollment levels in the district's schools. There are of course, other non-demographic factors that affect enrollment levels over time. These factors include, but are not limited to: transfer policies within the district: student transfers to and from neighboring districts, placement of "special programs" within school facilities that may serve students from outside the attendance area, state or federal mandates that dictate the movement of students from one facility to another (No Child Left Behind was an excellent example of this factor), the development of charter schools in the district, the prevalence of home schooling in the area, and the dynamics of local private schools.

Unless the district specifically requests the calculation of forecasts that reflect the effects of changes in these non-demographic factors, their influences are held constant for the life of the forecasts. Again, the main function of these forecasts is to determine what impact demographic changes will have on future enrollment. It is quite possible to calculate special "scenario" forecasts to measure the impact of school policy modifications as well as planned economic and financial changes. However in this case the results of these population and enrollment forecast are meant to represent the most likely

scenario for changes over the next 10 years in the district and its attendance areas.

The first part of the report will examine the assumptions made in calculating the population forecasts for the Needham Public Schools. Since the results of the population forecasts drive the subsequent enrollment forecasts, the assumptions listed in this section are paramount to understanding the area's demographic dynamics. The remainder of the report is an explanation and analysis of the district's population forecasts and how they will shape the district's grade level enrollment forecasts.

DATA

The data used for the forecasts come from a variety of sources. The Needham Public Schools provided enrollments by grade and attendance center for the school years 2010-2011 to 2016-17. Birth and death data for the years 2000 through 2014 were obtained from the Massachusetts Department of Health. The net migration values were calculated using Internal Revenue Service migration reports for the years 2000 through 2013. The data used for the calculation of migration models came from the United States Bureau of the Census, 2005 to 2010, and the models were designed using demographic and economic factors. The base age-sex population counts used are from the results of the 2010 Census.

Recently the Census Bureau began releasing annual estimates of demographic variables at the block group and tract level from the American Community Survey (ACS). There has been wide scale reporting of these results in the national, state and local media. However, due to the methodological problems the Census Bureau is experiencing with their estimates derived from ACS data, particularly in areas with a population of less than 60,000, the results of the ACS are not used in these forecasts. For example, given the sampling framework used by the Census Bureau, each year only 110 of the over 3,400 current households in the district would have been included. For comparison 570 households in the district were included in the sample for the long form questionnaire in the 2000 Census. As a result of this small sample size, the ACS survey results from the last 5 years must be aggregated to produce the tract and block group estimates.

To develop the population forecast models, past migration patterns, current age specific fertility patterns, the magnitude and dynamics of the gross migration, the age specific mortality trends, the distribution of the population by age and sex, the rate and type of existing housing unit sales, and future housing unit construction are considered to be primary variables. In addition, the change in household size relative to the age structure of the forecast area was addressed. While there was a slight drop in the average household size in the Needham Public Schools as well as most other areas of the state during the previous 20 years, the rate of this decline has been forecasted to slow over the next ten years.

ASSUMPTIONS

For these forecasts, the mortality probabilities are held constant at the levels calculated for the year 2010. While the number of deaths in an area are impacted by and will change given the proportion of the local population over age 65, in the absence of an extraordinary event such as a natural disaster or a breakthrough in the treatment of heart disease, death rates rarely move rapidly in any direction, particularly at the school district or

attendance area level. Thus, significant changes are not foreseen in district's mortality rates between now and the year 2026. Any increases forecasted in the number of deaths will be due primarily to the general aging of the district's population and specifically to the increase in the number of residents aged 65 and older.

Similarly, fertility rates are assumed to stay fairly constant for the life of the forecasts. Like mortality rates, age specific fertility rates rarely change quickly or dramatically, particularly in small areas. Even with the recently reported rise in the age 30 to 39 year old fertility rates of the United States, overall fertility rates have stayed within a 10% range for most of the last 40 years. In fact, the vast majority of year to year change in an area's number of births is due to changes in the number of women in child bearing ages (particularly ages 20-34) rather than any fluctuation in an area's fertility rate.

The total fertility rate (TFR), the average number of births a woman will have while living in the school district during her lifetime, is estimated to be 1.87 for the total district for the ten years of the population forecasts. A TFR of 2.1 births per woman is considered to be the theoretical "replacement level" of fertility necessary for a population to remain constant in the absence of in-migration. Therefore, in the absence of migration, fertility alone would be insufficient to maintain the current level of population and enrollment within the Needham Public Schools over the course of the forecast period.

A close examination of data for the Needham Public Schools has shown the age specific pattern of net migration will be nearly constant throughout the life of the forecasts. While the number of in and out migrants has changed in past years for the Needham Public Schools (and will change again over the next 10 years), the basic age pattern of the migrants has stayed nearly the same over the last 30 years. Based on the analysis of data it is safe to assume this age specific migration trend will remain unchanged into the future. This pattern of migration shows most of the local out-migration occurring in the 18-to-24 year old age group as young adults leave the area to go to college or move to other urbanized areas. The second largest group of out-migrants are those householders aged 70 and older who are downsizing their residences. Most of the local in-migration occurs in the 0-to-9 and 30-44 age groups (the bulk of the which come from areas within 75 miles of the Needham Public Schools) primarily consisting of younger adults and their children.

As the Norfolk County area is not currently contemplating any major expansions or contractions, the forecasts also assume that the current economic, political, social, and environmental factors, as well as the transportation and public works infrastructure (with a few notable exceptions) of the Needham Public Schools and its attendance areas will remain the same through the year 2026. Below is a list of assumptions and issues that are specific to the Needham Public Schools. These issues have been used to modify the population forecast models to more accurately predict the impact of these factors on each area's population change. Specifically, the forecasts for the Needham Public School assume that throughout the study period:

a. There will be no short term economic recovery in the next 18 months and the national, state or regional economy does not go into deep recession at any time during the 10 years of the forecasts; (Deep recession is defined as four

consecutive quarters where the GDP contracts greater than 1% per quarter)

- b. Interest rates have reached a historic low and will not fluctuate more than one percentage point in the short term; the interest rate for a 30 year fixed home mortgage stays below 5.0%;
- c. The rate of mortgage approval stays at 1999-2003 levels and lenders do not return to "sub-prime" mortgage practices;
- d. There are no additional restrictions placed on home mortgage lenders or additional bankruptcies of major credit providers;
- e. The rate of housing foreclosures does not exceed 125% of the 2005-2007 average of Norfolk County for any year in the forecasts;
- f. All currently platted and approved housing developments are built out and completed by 2025. All housing units constructed are occupied by 2026.
- g. The unemployment rates for the Norfolk County and the Boston Metropolitan Area will remain below 4.5% for the 10 years of the forecasts;
- h. The rate of students transferring into and out of the Needham Public Schools will remain at the 2011-12 to 2016-17 average;
- i. The inflation rate for gasoline will stay below 5% per year for the 10 years of the forecasts;
- j. The town of Needham will average approximately 75 new housing units constructed annually until 2020. The average will drop to 50 per year between 2021 and 2035.
- k. There will be no building moratorium within the district;
- 1. Businesses within the district and the

Needham Public Schools area will remain viable;

- m. The number of existing home sales in the district that are a result of "distress sales" (homes worth less than the current mortgage value) will not exceed 20% of total homes sales in the district for any given year;
- n. Housing turnover rates (sale of existing homes in the district) will remain at their current levels. The majority of existing home sales are made by home owners over the age of 60;
- o. Private school and home school attendance rates will remain constant;
- p. The rate of foreclosures for commercial property remains at the 2004-2008 average for Norfolk County;

If a major employer in the district or in the Greater Boston Metropolitan Area closes, reduces or expands its operations, the population forecasts would need to be adjusted to reflect the changes brought about by the change in economic and employment conditions. The same holds true for any type of natural disaster, major change in the local infrastructure (e.g., highway construction, water and sewer expansion, changes in zoning regulations etc.), a further economic downturn, any additional weakness in the housing market or any instance or situation that causes rapid and dramatic population changes that could not be foreseen at the time the forecasts were calculated.

The high proportion of high school graduates from the Needham Public Schools that attend college or move to urban areas outside of the district for employment is a significant demographic factor. Their departure is a major reason for the extremely high out-migration in the 18-to-24 year old age

group, and was taken into account when calculating these forecasts. The out-migration of graduating high school seniors is expected to continue over the period of the forecasts and the rate of out-migration has been forecasted to remain the same over the life of the forecast series.

Finally, all demographic trends (i.e., births, deaths, and migration) are assumed to be linear in nature and annualized over the forecast period. For example, if 1,000 births are forecasted for a 5-year period, an equal number, or proportion of the births are assumed to occur every year, 200 per year. Actual year-to-year variations do and will occur, but overall year to year trends are expected to be constant.

METHODOLOGY

The population forecasts presented in this report are the result of using the Cohort-Component Method of population forecasting (Siegel, and Swanson, 2004: 561-601) (Smith et. al. 2004). As stated in the INTRODUCTION, the difference between a projection and a forecast is in the use of explicit judgment based upon the unique features of the area under study. Strictly speaking, a cohort projection refers to the future population that would result from a mathematical extrapolation of historical trends. Conversely, a cohortcomponent forecast refers to the future population that is expected because of a studied and purposeful selection of the components of change (i.e., births, deaths, and migration) and forecast models are developed to measure the impact of these changes in each specific geographic area.

Five sets of data are required to generate population and enrollment forecasts. These five data sets are:

- a base-year population (here, the 2010 Census population for Needham Public Schools);
- 2. a set of age-specific fertility rates for the district and the attendance areas to be used over the forecast period;
- 3. a set of age-specific survival (mortality) rates for the district and the attendance areas;
- 4. a set of age-specific migration rates for the district and the attendance areas, and;
- 5. the historical enrollment figures by grade.

The most significant and difficult aspect of producing enrollment forecasts is the generation of the population forecasts in which the school age population (and enrollment) is embedded. In turn, the most challenging aspect of generating the population forecasts is found in deriving the rates of change in fertility, mortality, and migration. From the standpoint of demographic analysis, the Needham Public Schools is classified as a "small area" population (as compared to the population of the state of Massachusetts or to that of the United States). Small area population forecasts are more complicated to calculate because local variations in fertility, mortality, and migration may be more irregular than those at the regional, state or national scale. Especially challenging is the forecast of the migration rates for local areas, because changes in the area's socioeconomic characteristics can quickly change from past and current patterns (Peters and Larkin, 2002.)

The population forecasts for Needham Public Schools were calculated using a cohortcomponent method with the populations divided into male and female groups by fiveyear age cohorts that range from 0-to-4 years of

age to 85 years of age and older (85+). Ageand sex-specific fertility, mortality, and migration models were constructed to specifically reflect the unique demographic characteristics of each of the attendance areas in the Needham Public Schools.

The enrollment forecasts were calculated using a modified average survivorship method. Average survivor rates (i.e., the proportion of students who progress from one grade level to the next given the average amount of net migration for that grade level) over the previous five years of year-toyear enrollment data were calculated for grades two through twelve. This procedure is used to identify specific grades where there are large numbers of students changing facilities for non-demographic factors, such as private school transfers or enrollment in special programs.

The survivorship rates were modified or adjusted to reflect the average rate of forecasted in and out-migration of 5-to-9, 10-to-14 and 15-to-17 year old cohorts to each of the attendance centers in Needham Public Schools for the period 2010 to 2016. These survivorship rates then were adjusted to reflect the forecasted changes in age-specific migration the district should experience over the next five years. These modified survivorship rates were used to project the enrollment of grades 2 through 12 for the period 2017 to 2021. The survivorship rates were adjusted again for the period 2021 to 2026 to reflect the predicted changes in the amount of age-specific migration in the district for the period. The procedure is repeated again for the 2026 to 2031 time period.

The forecasted enrollments for kindergarten and first grade are derived from the 5-to-9 year old population of the age-sex population forecast at the elementary

attendance center district level. This procedure allows the changes in the incoming grade sizes to be factors of forecasted population change and not an extrapolation of previous class sizes. Given the potentially large amount of variation in Kindergarten enrollment due to parental choice, changes in the state's minimum age requirement, and differing district policies on allowing children to start Kindergarten early, first grade enrollment is deemed to be a more accurate and reliable starting point for the forecasts. (McKibben, 1996) The level of the accuracy for both the total population and total enrollment forecasts at the school district level is estimated to be $\pm 2.0\%$ for the life of the forecasts.

REFERENCES

McKibben, J. The Impact of Policy Changes on Forecasting for School Districts. Population Research and Policy Review, Vol. 15, No. 5-6, December 1996 McKibben, J., M. Gann, and K. Faust. The Baby Boomlet's Role in Future College Enrollment. American Demographics, June 1999. Peters, G. and R. Larkin Population Geography. 7th Edition. Dubuque, IA: Kendall Hunt Publishing. 2002. Siegel, J. and D. Swanson The Methods and Materials of Demography: Second Edition, Academic Press: New York, New York. 2004. Smith, S., J. Tayman and D. Swanson State and Local Population Projections, Academic Press, New York, New York. 2001.

Appendix A: Population Forecasts

Needham Public Schools: Total Population

Males	2010	2015	2020	2025	2030	Females
0-4	919	870	810	800	770	0-4
5-9	1,279	1,120	1,160	1,090	1,040	5-9
10-14	1,270	1,310	1,160	1,200	1,120	10-14
15-19	990	1,020	1,040	910	960	15-19
20-24	554	630	670	670	560	20-24
25-29	361	450	570	580	570	25-29
30-34	420	560	650	760	780	30-34
35-39	858	620	760	830	930	35-39
40-44	1,093	890	650	810	880	40-44
45-49	1,208	1,080	860	630	830	45-49
50-54	1,161	1,180	1,070	850	620	50-54
55-59	997	1,140	1,150	1,040	840	55-59
60-64	887	930	1,040	1,090	970	60-64
65-69	545	780	820	940	980	65-69
70-74	376	410	610	660	750	70-74
75-79	367	330	340	540	570	75-79
80-84	308	350	290	310	480	80-84
85+	331	320	320	320	310	85+
Total	13,924	13,990	13,970	14,030	13,960	Total

males	2010	2015	2020	2025	2030		Total	2010	2015	2020	2025	
0-4	952	840	790	780	750		0-4	1,871	1,710	1,600	1,580	
5-9	1,209	1,160	1,140	1,080	1,030		5-9	2,488	2,280	2,300	2,170	
10-14	1,197	1,240	1,200	1,180	1,100		10-14	2,467	2,550	2,360	2,380	
15-19	873	940	970	950	940		15-19	1,863	1,960	2,010	1,860	
20-24	427	490	610	590	590		20-24	981	1,120	1,280	1,260	
25-29	352	320	440	510	500		25-29	713	770	1,010	1,090	
30-34	559	550	520	650	710		30-34	979	1,110	1,170	1,410	
35-39	897	760	760	700	820		35-39	1,755	1,380	1,520	1,530	
40-44	1,200	920	790	810	760		40-44	2,293	1,810	1,440	1,620	
45-49	1,315	1,190	920	790	840		45-49	2,523	2,270	1,780	1,420	
50-54	1,258	1,300	1,190	910	790		50-54	2,419	2,480	2,260	1,760	
55-59	1,048	1,240	1,280	1,170	910		55-59	2,045	2,380	2,430	2,210	
60-64	914	1,000	1,170	1,230	1,110		60-64	1,801	1,930	2,210	2,320	
65-69	640	840	910	1,080	1,140		65-69	1,185	1,620	1,730	2,020	
70-74	498	540	720	800	940		70-74	874	950	1,330	1,460	
75-79	463	430	450	620	690		75-79	830	760	790	1,160	
80-84	468	450	400	420	580		80-84	776	800	690	730	
85+	710	750	740	730	720		85+	1,041	1,070	1,060	1,050	
Total	14,980	14,960	15,000	15,000	14,920		Total	28,904	28,950	28,970	29,030	
							Median Age	42.9	44.4	44.3	43.8	

	2010 to	2015 to	2020 to	2025 to
	2015	2020	2025	2030
Births	1,070	1,070	1,180	1,190
Deaths	1,410	1,490	1,520	1,580
Natural Increase	-340	-420	-340	-390
Net Migration	390	380	340	310
Change	50	-40	0	-80

Differences between period Totals may not equal

Change due to rounding.

2030

1,520

2,070

2,220

1,900

1,150

1,070

1,490

1,750

1,640

1,670

1,410

1,750

2,080

2,120

1,690

1,260 1,060

1,030

28,880 43.9

Males	2010	2015	2020	2025	2030	Females	2010	2015	2020	2025
0-4	196	180	170	170	160	0-4	195	170	160	170
5-9	280	250	240	220	220	5-9	282	250	230	220
10-14	287	290	260	240	220	10-14	258	290	260	240
15-19	172	220	230	200	190	15-19	168	190	230	200
20-24	67	70	130	110	100	20-24	71	60	100	110
25-29	50	40	40	80	70	25-29	47	40	40	50
30-34	52	80	70	100	130	30-34	75	80	70	100
35-39	182	120	140	130	150	35-39	197	140	140	130
40-44	222	190	130	150	130	40-44	243	200	150	150
45-49	249	220	180	120	150	45-49	263	240	200	150
50-54	205	240	220	180	120	50-54	236	260	240	200
55-59	203	200	240	210	180	55-59	191	230	260	240
60-64	165	190	190	230	200	60-64	164	190	230	250
65-69	92	140	170	170	200	65-69	116	140	170	200
70-74	77	60	100	140	130	70-74	95	90	120	150
75-79	61	70	40	90	120	75-79	94	80	70	100
80-84	58	60	60	40	80	80-84	85	90	80	60
85+	38	50	50	60	50	85+	70	100	110	120
Total	2,652	2,670	2,660	2,640	2,600	Total	2,846	2,840	2,860	2,840

Broadmeadow Elementary

020	2025	2030		Total	2010	2015	2020	2025	2030
160	170	160	Ī	0-4	391	350	330	340	320
230	220	220		5-9	562	500	470	440	440
260	240	220	Γ	10-14	545	580	520	480	440
230	200	190	Γ	15-19	340	410	460	400	380
100	110	100		20-24	138	130	230	220	200
40	50	70		25-29	97	80	80	130	140
70	100	100		30-34	127	160	140	200	230
140	130	150		35-39	378	260	280	260	300
150	150	140		40-44	465	390	280	300	270
200	150	150		45-49	512	460	380	270	300
240	200	150		50-54	441	500	460	380	270
260	240	200		55-59	394	430	500	450	380
230	250	230		60-64	329	380	420	480	430
170	200	230		65-69	207	280	340	370	430
120	150	170		70-74	172	150	220	290	300
70	100	130		75-79	155	150	110	190	250
80	60	100		80-84	142	150	140	100	180
110	120	120		85+	107	150	160	180	170
,860	2,840	2,830		Total	5,498	5,510	5,520	5,480	5,430
				Median Age	41.9	43.7	44.5	44.5	44.9

	2010 to	2015 to	2020 to	2025 to
	2015	2020	2025	2030
Births	170	170	180	180
Deaths	230	250	270	280
Natural Increase	-60	-80	-90	-100
Net Migration	70	60	60	50
Change	10	-20	-30	-50

Differences between period Totals may not equal

Males	2010	2015	2020	2025	2030	Females	2010	2015	2020	2025	2030	
0-4	135	150	130	140	130	0-4	147	140	130	130	130	
5-9	196	170	200	190	180	5-9	175	180	200	190	170	
10-14	184	200	180	210	200	10-14	167	180	190	210	190	
15-19	116	160	170	150	180	15-19	130	140	150	160	170	
20-24	82	80	90	100	90	20-24	60	90	80	70	100	
25-29	80	90	90	100	100	25-29	77	70	100	80	80	
30-34	102	120	140	140	150	30-34	123	110	120	150	130	
35-39	137	130	150	170	160	35-39	142	150	150	150	170	
40-44	197	130	140	170	190	40-44	188	140	160	170	170	
45-49	178	190	130	130	170	45-49	191	190	140	160	170	
50-54	183	170	190	130	130	50-54	201	190	190	140	160	
55-59	141	180	170	190	130	55-59	165	200	190	180	140	
60-64	125	120	150	150	160	60-64	120	140	170	170	160	
65-69	75	100	90	130	120	65-69	85	100	120	150	140	
70-74	52	50	70	70	100	70-74	85	70	80	100	130	
75-79	73	40	40	60	50	75-79	93	70	50	60	80	
80-84	56	70	30	30	50	80-84	85	90	60	50	60	
85+	59	60	60	50	40	85+	138	140	140	130	110	
Total	2,168	2,210	2,220	2,310	2,330	Total	2,369	2,390	2,420	2,450	2,460	
												ľ

Eliot Elementary

Total	2010	2015	2020	2025	2030
0-4	281	290	260	270	260
5-9	370	350	400	380	350
10-14	350	380	370	420	390
15-19	245	300	320	310	350
20-24	142	170	170	170	190
25-29	157	160	190	180	180
30-34	225	230	260	290	280
35-39	279	280	300	320	330
40-44	385	270	300	340	360
45-49	369	380	270	290	340
50-54	384	360	380	270	290
55-59	306	380	360	370	270
60-64	245	260	320	320	320
65-69	160	200	210	280	260
70-74	137	120	150	170	230
75-79	165	110	90	120	130
80-84	141	160	90	80	110
85+	197	200	200	180	150
Total	4,537	4,600	4,640	4,760	4,790
Median Age	42.8	42.6	40.8	40.6	40.9

	2010 to 2015 to		2020 to	2025 to
	2015	2020	2025	2030
Births	200	210	220	220
Deaths	240	250	230	220
Natural Increase	-40	-40	-10	0
Net Migration	90	90	80	80
Change	50	50	70	80

Differences between period Totals may not equal

Males	2010	2015	2020	2025	2030	Females	2010	2015	2020	2025	2030		Total
0-4	169	170	170	150	140	0-4	173	170	160	150	140	Ī	0-4
5-9	205	200	220	200	190	5-9	205	210	220	200	190		5-9
10-14	199	210	200	230	210	10-14	174	210	210	220	200		10-14
15-19	240	160	130	150	170	15-19	205	140	130	160	170		15-19
20-24	207	170	130	100	130	20-24	146	130	110	100	130		20-24
25-29	95	150	140	110	80	25-29	96	90	100	80	80		25-29
30-34	100	140	180	160	130	30-34	130	140	120	130	110		30-34
35-39	170	160	200	230	210	35-39	167	190	200	170	180		35-39
40-44	202	190	160	200	230	40-44	214	180	190	200	170		40-44
45-49	210	200	180	160	200	45-49	265	210	180	190	200		45-49
50-54	222	210	200	180	150	50-54	242	260	210	180	190		50-54
55-59	199	220	200	190	180	55-59	188	240	260	210	180		55-59
60-64	171	190	210	190	180	60-64	191	180	230	250	200		60-64
65-69	113	150	170	180	170	65-69	125	180	170	210	230		65-69
70-74	76	90	130	130	140	70-74	103	110	160	140	180		70-74
75-79	64	70	80	110	120	75-79	102	90	100	140	120		75-79
80-84	80	60	60	80	100	80-84	137	100	80	90	130		80-84
85+	129	100	80	70	70	85+	320	290	250	210	190		85+
Total	2,848	2,840	2,840	2,820	2,800	Total	3,182	3,120	3,080	3,030	2,990		Total
												Ī	Median Age

Hillside Elementary

Total

6,030

44.0

5,960

44.6

5,920

44.9

5,850

44.8

5,790

45.4

	2010 to	2015 to	2020 to	2025 to
	2015	2020	2025	2030
Births	270	250	240	230
Deaths	400	370	350	350
Natural Increase	-130	-120	-110	-120
Net Migration	60	60	50	50
Change	-70	-60	-60	-70

Differences between period Totals may not equal

Males	2010	2015	2020	2025	2030	Females	2010	2015	2020	
0-4	171	140	130	130	140	0-4	173	130	130	
5-9	216	210	210	200	190	5-9	246	210	210	
10-14	212	220	220	220	210	10-14	206	250	220	
15-19	144	180	190	190	200	15-19	126	170	220	
20-24	74	80	110	130	110	20-24	46	60	110	
25-29	40	50	60	70	70	25-29	45	20	40	
30-34	72	80	90	90	110	30-34	76	90	60	
35-39	142	90	100	110	120	35-39	153	100	110	
40-44	188	150	100	100	120	40-44	212	160	110	
45-49	202	190	150	100	110	45-49	205	210	160	
50-54	182	200	180	140	100	50-54	201	200	210	
55-59	170	180	190	180	140	55-59	182	200	190	
60-64	148	160	150	180	170	60-64	151	180	180	
65-69	87	130	140	140	170	65-69	87	140	150	
70-74	49	60	100	110	120	70-74	67	70	110	
75-79	46	40	50	90	100	75-79	40	60	50	
80-84	32	40	40	40	80	80-84	47	40	60	
85+	31	30	40	40	40	85+	58	70	70	
Total	2,203	2,230	2,250	2,260	2,300	Total	2,318	2,360	2,390	

Mitchell Elementary

2025	2030	Total	2010	2015	2020	2025	2030
130	130	0-4	344	270	260	260	270
200	190	5-9	461	420	420	400	380
220	210	10-14	417	470	440	440	420
190	190	15-19	270	350	410	380	390
160	110	20-24	120	140	220	290	220
70	100	25-29	85	70	100	140	170
70	110	30-34	148	170	150	160	220
80	100	35-39	294	190	210	190	220
110	90	40-44	400	310	210	210	210
110	120	45-49	407	400	310	210	230
160	110	50-54	383	400	390	300	210
210	160	55-59	351	380	380	390	300
190	200	60-64	299	340	330	370	370
170	180	65-69	174	270	290	310	350
140	150	70-74	116	130	210	250	270
100	120	75-79	86	100	100	190	220
50	90	80-84	79	80	100	90	170
80	80	85+	88	100	110	120	120
2,440	2,440	Total	4,521	4,590	4,640	4,700	4,740
		Median Age	41.5	43.5	42.6	42.1	41.9

	2010 to	2015 to	2020 to	2025 to
	2015	2020	2025	2030
Births	160	150	190	210
Deaths	170	190	210	220
Natural Increase	-10	-40	-20	-10
Net Migration	80	80	70	60
Change	70	40	50	50

Differences between period Totals may not equal

Males	2010	2015	2020	2025	2030	Females	2010	2015	2020	2025	2030
0-4	249	230	210	210	200	0-4	266	230	210	200	19
5-9	383	290	290	280	260	5-9	302	310	280	270	26
10-14	389	390	300	300	280	10-14	394	310	320	290	28
15-19	319	300	320	220	220	15-19	245	300	240	240	22
20-24	125	230	210	230	130	20-24	105	150	210	150	15
25-29	96	120	240	220	250	25-29	87	100	160	230	17
30-34	95	140	170	270	260	30-34	155	130	150	200	26
35-39	229	120	170	190	290	35-39	238	180	160	170	22
40-44	285	230	120	190	210	40-44	344	240	180	180	19
45-49	370	280	220	120	200	45-49	391	340	240	180	20
50-54	369	360	280	220	120	50-54	379	390	340	230	18
55-59	284	360	350	270	210	55-59	323	370	380	330	23
60-64	278	270	340	340	260	60-64	288	310	360	370	32
65-69	178	260	250	320	320	65-69	228	280	300	350	36
70-74	123	150	210	210	260	70-74	148	200	250	270	31
75-79	124	110	130	190	180	75-79	135	130	180	220	24
80-84	83	120	100	120	170	80-84	115	130	120	170	20
85+	75	80	90	100	110	85+	125	150	170	190	22
Total	4,053	4,040	4,000	4,000	3,930	Total	4,266	4,250	4,250	4,240	4,20

Newman Elementary

_						
)	Total	2010	2015	2020	2025	2030
90	0-4	514	460	420	410	390
50	5-9	685	600	570	550	520
30	10-14	783	700	620	590	560
20	15-19	563	600	560	460	440
50	20-24	230	380	420	380	280
70	25-29	183	220	400	450	420
50	30-34	249	270	320	470	520
20	35-39	467	300	330	360	510
90	40-44	628	470	300	370	400
00	45-49	761	620	460	300	400
30	50-54	749	750	620	450	300
30	55-59	607	730	730	600	440
20	60-64	566	580	700	710	580
60	65-69	406	540	550	670	680
0	70-74	271	350	460	480	570
10	75-79	259	240	310	410	420
00	80-84	197	250	220	290	370
20	85+	201	230	260	290	330
00	Total	8,319	8,290	8,250	8,240	8,130
	Median Age	43.9	46.2	47.0	46.3	45.3

	2010 to	2015 to	2020 to	2025 to
	2015	2020	2025	2030
Births	270	290	350	350
Deaths	370	430	460	510
Natural Increase	-100	-140	-110	-160
Net Migration	90	90	80	70
Change	-10	-50	-30	-90

Differences between period Totals may not equal

Appendix B: Enrollment Forecasts

Needham Public Schools: Total District Enrollment

PK 76 74 82 80<		2010-11	2011-12	2012-13	2013-14	2014-15	2015-16	2016-17	2017-18	2018-19	2019-20	2020-21	2021-22	2022-23	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32
b b<	PK	76	74	82	84	82	82	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
1 439 984 499 441 440 837 433 408 411 415 416 400 900 303 300 305 300 307	K	363	398	414	406	365	404	369	384	388	389	382	380	375	369	367	362	362	358	355	350	344	349
2 422 447 300 444 471 307 444 418 422 425 427 420 415 410 404 403 307 392 386 588 4 485 611 446 407 415 401 447 401 448 409 415 411 414 409 433 433 436 421 421 417 415 400 404 401 415 400 416 433 426 423 426 433 436 421 417 415 400 413 406 430 444 446 439 434 </td <td>1</td> <td>439</td> <td>384</td> <td>419</td> <td>441</td> <td>449</td> <td>387</td> <td>433</td> <td>408</td> <td>411</td> <td>415</td> <td>416</td> <td>409</td> <td>404</td> <td>399</td> <td>393</td> <td>390</td> <td>385</td> <td>380</td> <td>376</td> <td>373</td> <td>367</td> <td>361</td>	1	439	384	419	441	449	387	433	408	411	415	416	409	404	399	393	390	385	380	376	373	367	361
8 436 417 450 473 401 448 422 425 430 425 420 411 410 404 999 996 937 946 433 433 433 433 432 423 423 423 423 433 432 423 434 434 434 434 434 434 434 434 434 434 434 434 434 434 434 434 444 444 443 444 444 444 444 444	2	422	447	390	419	444	471	397	444	418	421	425	427	420	415	410	404	403	397	392	389	386	378
4 485 431 419 444 409 449 423 426 421	3	436	417	450	413	416	450	473	401	448	422	425	430	432	425	420	415	411	410	404	399	396	393
5 430 491 422 425 421 421 421 421 421 421 421 421 423 420 421 421 421 421 421 421 421 421 421 421 421 421	4	485	431	419	444	409	415	455	474	402	449	423	426	431	433	426	421	421	417	415	409	404	401
Toth: K-3 2,579 2,589 2,580 2,580 2,581 2,580 2,581 2,581 2,480 2,481 2,480 2,407 2,481 2,480 2,487 2,480 2,487 2,480 2,487 2,480 2,487 2,480 2,487 2,480 2,481 2,480 2,481 2,480 2,487 2,481 444 446 439 434 439 444 446 439 434 439 442 422 423 430 430 432 423 423 8 405 419 410 440 439 441 440 440 443 421 447 421 435 430 430 433 441 441 441 441 441 441 444 440 440 442 447 440 440 442 447 440 440 442 447 440 440 442 447 440 440 441 441 441 441 441 441 441 441 441 441 441	5	430	491	427	436	439	415	425	458	478	405	452	425	428	433	435	428	425	425	421	419	413	408
6 448 438 452 427 451 451 421 436 490 415 463 439 444 446 439 434 424 429 427 421 7 424 413 421 447 435 430 433 433 433 433 433 403 443 442 442 443 440 433 428 423 8 405 419 404 437 400 433 433 413 422 460 483 409 456 430 433 440 440 443 424 449 449 449 449 444	Total: K-5	2,575	2,568	2,519	2,559	2,522	2,542	2,552	2,569	2,545	2,501	2,523	2,497	2,490	2,474	2,451	2,420	2,407	2,387	2,363	2,339	2,310	2,290
6 448 489 442 447 451 451 421 436 490 444 446 499 444 446 499 444 446 499 444 446 499 444 442 437 442 442 433 400 433 400 433 400 433 400 433 400 433 400 433 400 433 400 433 400 433 400 433 400 433 400 433 400 433 400 435 435 433 400 435 433 400 435 433 400 433 434 440 434 443 441 434 441 440 440 443 441 440 440 441 441 440 443 441 441 441 441 440 443 441 441 441 443 443 441 441 441																							
7 424 413 421 467 404 439 445 419 401 430 447 442 443 442 442 443 440 443 428 423 8 405 419 410 400 437 400 433 438 413 427 460 438 409 456 430 433 440 440 433 428 428 423 Total 7.8 829 832 831 871 861 839 876 857 887 887 880 887 887 880 887 880 887 883 888 885 853 846 9 380 400 420 414 441 4	6	448	438	482	427	451	451	421	436	469	490	415	463	436	439	444	446	439	434	434	429	427	421
7 1/24 413 4/21 440 443 44/2 446 448 441 441 442 443 440 443 440 443 440 443 440 443 440 443 440 443 440 443 440 443 440 443 440 443 440 443 440 443 440 443 440 443 440 442 440 442 443 441						10.1	180		110	10.1		100								100			100
a dob d10 d10 d20 d23 d23 d21 d40 d43 d40 d43 d43 d41 d40 d43 d43 d41 d40 d43 d43 d43 d41 d40 d43 d43 d43 d43 d40 d43 d43 d43 d43 d40 d43 d43 d40 d43 d43 d40 d43 d43 d43 d45 d41 d43 d41 d41 d41 d43 d41 d41 d43 d41 d41 d41 d43 d41 d41 d43 d41 d41 d43 d41	7	424	413	421	467	404	439	445	419	434	467	488	413	461	434	437	442	442	435	430	430	425	423
IOBE / 4 B22 B32 B31 B31 B51 B39 B70 B39 B70 B39 B70 B87 B87 B82 B87 B83 B89 B70 B89 B70 B87 B87 B82 B87 B83 B85 B83 L433 L440 L433 L441 L414 L414 <thl414< th=""> L414 <thl414< th=""> <thl41< td=""><td>8</td><td>405</td><td>419</td><td>410</td><td>404</td><td>457</td><td>400</td><td>431</td><td>438</td><td>413</td><td>427</td><td>460</td><td>483</td><td>409</td><td>456</td><td>430</td><td>433</td><td>440</td><td>440</td><td>433</td><td>428</td><td>428</td><td>423</td></thl41<></thl414<></thl414<>	8	405	419	410	404	457	400	431	438	413	427	460	483	409	456	430	433	440	440	433	428	428	423
9 380 400 420 414 400 449 416 440 447 421 436 472 495 419 467 439 442 449 442 437 437 10 373 391 398 417 418 396 446 414 438 447 440 433 447 440 433 456 488 413 460 433 446 444 441 441 441 441 445 449 440 433 445 449 443 440 443 441 441 441 441 445 449 442 443 444 441<	1 otal: 7-8	829	832	831	871	861	839	876	857	847	894	948	896	870	890	867	875	882	875	863	858	853	846
3 300 400 420 411 400 440 440 440 440 440 440 440 440 443 444 447 443 447 443 447 443 447 443 447 443 447 443 447 443 447 443 447 443 447 443 447 443 447 443 447 443 443 443 441 443 441 443 444 441 443 444 441 443 444 441 443 444 443 444 441 443 444 443 444 443 443 444 443 444 443 444 443 444 443 444 443 444 443 444 444 444 444 444 444 444 444 444 444 444 444 444 441 441 441 441 441 441 441 441 441 441 441 441 441 444 444	0	280	400	420	414	400	440	416	440	447	401	126	472	405	410	467	420	442	440	440	442	427	427
10 033 031	9	272	271	420	414	400	206	416	440	447	421	436	472	493	419	407	439	442	449	449	442	437	437
11 300 302 302 302 400 402 400 40	10	267	279	390	292	410	407	206	414	430	445	419	434	470	493	417	403	437	440	447	447	440	435
11 329 303 300 403 401 403 403 403 411 423 411 411 411 413 411 413 411 413 411 413 411 413 414 414 413 41	11	220	370	369	362	280	407	396	204	410	434	441	415	430	403	400	413	400	455	430	443	445	430
of of<	SP SP	329	575	300	505	309	412	401	394	440	408	432	439	413	420	403	400	411	438	431	434	441	441
Total: K-12 5,377 5,434 5,476 5,588 5,558 5,588 5,588 5,568 5,588 5,578 5,588 5,588 5,558 5,533 5,472 5,431 5,386 Total: K-12 5,377 5,444 44 3 21 2 12 4 11 6.33 2,333 2,330 2,310 2,290 Total: K-5 2,575 2,568 2,519 2,525 2,552 2,559 2,545	Total: 9-12	1 // 9	1 522	1 562	1 582	1 631	1 672	1 659	1 690	1 735	1 708	1 728	1 760	1 808	1 805	1 835	1 803	1 750	1 780	1 763	1 766	1 761	1 7/19
Total: K-12 5,474 5,474 5,222 5,474 5,200 5,000	Total: K-12	5 377	5 4 3 4	5 476	5 5 2 3	5 547	5 586	5 588	5,632	5.676	5.673	5 694	5,696	5,684	5,688	5,677	5 624	5 558	5 556	5 503	5 472	5 4 3 1	5 386
Total: K-12 5,377 5,434 5,476 5,528 5,547 5,586 5,588 5,692 5,696 5,694 5,684 5,684 5,692 5,588 5,556 5,503 5,472 5,431 5,386 Change 57 42 47 24 39 2 44 44 -3 21 2 -12 4 -11 -53 -66 -2 -53 -31 41 45 %-Change 1.1% 0.8% 0.9% 0.4% 0.7% 0.0% 0.8% 0.1% 0.4% 0.0% -0.2% 0.1% -0.2% 0.9% -1.2% 0.0% -1.0% 0.6% 0.7% 0.0% 0.8% 0.0% 0.0% 0.2% 0.1% 0.0% -1.2% 0.0% -1.0% 0.2% 0.1% 0.1% 0.2% 0.0% -1.0% 0.2% 0.1% 0.2% 0.1% 0.2% 0.1% 0.2% 0.1% 0.2% 0.1% 0.2% 0.1% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% <	10441.14-12	5,511	5,151	5,170	0,010	5,517	5,500	5,500	0,002	5,670	5,015	5,074	3,090	5,004	3,000	5,011	5,014	3,330	5,550	5,505	5,172	5,101	5,500
Change 57 42 47 24 39 2 44 44 3 21 2 1.12 4 1.11 53 56 2 53 3.1 4.1 44 %-Change 1.1% 0.8% 0.9% 0.4% 0.0% 0.2% 0.1% 0.2% 0.9% 1.2% 0.0% 1.0% 0.6% -0.7% 0.8% Total: K-5 2.575 2.568 2.519 2.559 2.522 2.522 2.559 2.522 2.569 2.515 2.501 2.523 2.497 2.490 2.474 2.451 2.420 2.407 2.387 2.363 2.339 2.310 2.290 Change -7 49 40 37 20 10 17 -24 44 22 2.66 7 -16 -23 -31 -13 -20 -24 -29 -20 %-Change -0.3% -1.6% 448 438 482 427 <t< td=""><td>Total: K-12</td><td>5.377</td><td>5.434</td><td>5.476</td><td>5.523</td><td>5.547</td><td>5,586</td><td>5,588</td><td>5.632</td><td>5.676</td><td>5.673</td><td>5.694</td><td>5.696</td><td>5.684</td><td>5.688</td><td>5.677</td><td>5.624</td><td>5,558</td><td>5,556</td><td>5,503</td><td>5.472</td><td>5.431</td><td>5.386</td></t<>	Total: K-12	5.377	5.434	5.476	5.523	5.547	5,586	5,588	5.632	5.676	5.673	5.694	5.696	5.684	5.688	5.677	5.624	5,558	5,556	5,503	5.472	5.431	5.386
"w-Change 1.1% 0.8% 0.9% 0.4% 0.7% 0.0% 0.8% 0.1% 0.4% 0.0% 0.2% 0.1% 0.2% 0.9% 1.2% 0.0% 1.0% 0.6% 0.7% 0.8% Total: K-5 2,575 2,566 2,519 2,522 2,522 2,569 2,545 2,501 2,523 2,497 2,490 2,474 2,451 2,420 2,407 2,387 2,363 2,339 2,310 2,290 Change -7 49 40 -37 20 10 17 -24 44 22 -26 -7 -16 -23 -31 -13 -20 -24 -24 -29 -20 "Change -0.3% -1.9% 1.6% -1.4% 0.8% 0.4% 0.7% -0.9% -1.1% 0.9% -1.0% -0.3% -0.6% -0.9% -1.3% -0.6% -0.9% -1.2% -0.9% -1.0% -0.4% -0.3% -0.6% -0.9% -1.2% -0.0% -1.0% -0.6% -0.6% -0.1% -0.0% -0.1%<	Change	0,011	57	42	47	24	39	2	44	44	-3	21	2	-12	4	-11	-53	-66	-2	-53	-31	-41	-45
Total: K-5 2,575 2,568 2,519 2,522 2,542 2,552 2,569 2,545 2,501 2,523 2,497 2,490 2,474 2,451 2,420 2,407 2,387 2,363 2,339 2,310 2,290 Change -7 49 40 -37 20 10 17 -24 44 22 -26 -7 -16 -23 -31 -13 -20 -24 -24 -29 -20 %-Change -0.3% -1.9% 1.6% -1.4% 0.8% 0.4% 0.7% -0.9% -1.7% 0.9% -1.0% -0.3% -0.6% -0.9% -1.3% 0.5% 0.8% -1.0% -1.0% -1.2% 0.9% Total: 6 448 438 482 427 451 421 436 469 490 415 463 436 439 444 446 439 434 434 429 427 421 Change -1.0 441 5.5% 0.7% 3.5 2 7 5.5 0	%-Change		1.1%	0.8%	0.9%	0.4%	0.7%	0.0%	0.8%	0.8%	-0.1%	0.4%	0.0%	-0.2%	0.1%	-0.2%	-0.9%	-1.2%	0.0%	-1.0%	-0.6%	-0.7%	-0.8%
Total: K-5 2,575 2,568 2,519 2,522 2,522 2,522 2,552 2,569 2,552 2,501 2,523 2,497 2,490 2,474 2,451 2,420 2,407 2,387 2,383 2,330 2,310 2,290 Change -7 49 40 -37 20 10 17 -24 44 22 -26 -7 -16 -23 -31 -13 -20 -24 -24 -29 -20 %-Change -0.3% -1.9% 1.6% -1.4% 0.8% 0.4% 0.7% -0.9% -1.7% 0.9% -1.0% -0.3% -0.6% -0.9% -1.3% 0.5% 0.8% -1.0% -1.2% 0.9% Total: 6 448 438 482 427 451 421 436 469 490 415 463 436 439 444 446 439 434 434 429 427 421 Change -10 444 -55 24 0 -30 15 33 21	0																						
Change -7 49 40 -37 20 10 17 -24 44 22 -26 -7 -16 -23 -31 -13 -20 -24 -24 -29 -20 %-Change -0.3% -1.9% 1.6% -1.4% 0.8% 0.4% 0.7% -0.9% -1.7% 0.9% -1.0% -0.3% -0.6% -0.9% -1.3% -0.5% -0.8% -1.0% -1.0% -0.3% -0.6% -0.9% -1.3% -0.5% -0.8% -1.0% -1.2% -0.9% -1.0% -0.3% -0.6% -0.9% -1.3% -0.5% -0.5% -0.8% -1.0% -1.0% -1.2% -0.9% -1.0% -0.3% -0.6% -0.9% -1.3% -0.5% -0.9% -1.3% -0.5% -0.5% -1.0% -1.1% 0.0%	Total: K-5	2,575	2,568	2,519	2,559	2,522	2,542	2,552	2,569	2,545	2,501	2,523	2,497	2,490	2,474	2,451	2,420	2,407	2,387	2,363	2,339	2,310	2,290
**Change -0.3% -1.9% 1.6% -1.4% 0.8% 0.4% 0.7% -0.9% -1.7% 0.9% -1.0% -0.3% -0.6% -0.9% -1.3% -0.5% -0.8% -1.0% -1.0% -1.2% -0.9% Total: 6 448 438 482 427 451 451 421 436 469 490 415 463 436 439 444 446 439 434 434 429 427 421 Change -10 444 -55 24 0 -30 15 33 21 -75 48 -27 3 5 2 -7 -5 0 -5 -2 -6 %-Change -2.2% 10.0% -1.1% 5.6% 0.0% -6.7% 3.6% 7.6% 455 1.5% 1.1% 0.5% 1.6% 1.2% 0.5% 1.4% 0.7% 1.1% 0.5% 1.6% 1.2% 0.5% 1.4% 0.7% 1.2% 0.5% 1.4% 0.7% 1.1% 0.5% 1.6% 1.1% <td>Change</td> <td></td> <td>-7</td> <td>-49</td> <td>40</td> <td>-37</td> <td>20</td> <td>10</td> <td>17</td> <td>-24</td> <td>-44</td> <td>22</td> <td>-26</td> <td>-7</td> <td>-16</td> <td>-23</td> <td>-31</td> <td>-13</td> <td>-20</td> <td>-24</td> <td>-24</td> <td>-29</td> <td>-20</td>	Change		-7	-49	40	-37	20	10	17	-24	-44	22	-26	-7	-16	-23	-31	-13	-20	-24	-24	-29	-20
Total: 6 448 438 482 427 451 451 421 436 469 490 415 463 436 439 444 446 439 434 434 429 427 421 Change -10 444 -55 24 0 -30 15 33 21 -75 48 -27 3 5 2 -7 -5 0 -55 -2 -6 %-Change -2.2% 10.0% -11.4% 5.6% 0.0% -6.7% 3.6% 7.6% 4.5% -15.3% 11.6% 5.8% 0.7% 1.1% 0.5% -1.6% -1.1% 0.0% -1.2% -0.5% -1.4% Total: 7-8 829 832 831 871 861 839 876 857 847 894 948 896 870 890 867 875 882 875 863 858 858 866 Change 3 -1.1% -2.6% 4.4% -2.2% -1.2% 5.5% 6.0% -5.5%	%-Change		-0.3%	-1.9%	1.6%	-1.4%	0.8%	0.4%	0.7%	-0.9%	-1.7%	0.9%	-1.0%	-0.3%	-0.6%	-0.9%	-1.3%	-0.5%	-0.8%	-1.0%	-1.0%	-1.2%	-0.9%
Total: 6 448 438 482 427 451 451 421 436 469 490 415 436 439 444 446 439 434 434 429 427 421 Change -10 444 -55 24 0 -30 15 33 21 -75 48 -27 3 5 2 -7 -5 00 -5 -2 -6 %-Change -2.2% 10.0% -11.4% 5.6% 0.0% -6.7% 3.6% 7.6% 4.5% -15.3% 11.6% 5.8% 0.7% 1.1% 0.5% 0.16% -1.1% 0.0% -1.2% -0.5% -1.4% Total: 7-8 829 832 831 871 861 839 876 857 847 894 948 896 870 870 882 875 883 875 863 886 870 870 2.3% 2.6% 9.9% 886 870 870 8.82 875 863 8858 885 885 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																							
Change -10 44 -55 24 0 -30 15 33 21 -75 48 -27 3 5 2 -7 -5 0 -5 -2 -6 %-Change -2.2% 10.0% -11.4% 5.6% 0.0% -6.7% 3.6% 7.6% 4.5% -15.3% 11.6% -5.8% 0.7% 1.1% 0.5% -1.6% -1.1% 0.0% -1.2% -0.5% -1.4% Total: 7-8 829 832 831 871 861 839 876 857 847 894 948 896 870 890 867 875 882 875 863 885 853 846 Change 3 -1 40 -10 -22 37 -19 -10 47 54 -52 -26 20 -23 8 7 -7 -12 -5 -5 -7 %-Change 0.4% -0.1% 4.4% -2.2% 1.2% 5.5% 6.0% -5.5% -2.9% 2.3% 0.8%	Total: 6	448	438	482	427	451	451	421	436	469	490	415	463	436	439	444	446	439	434	434	429	427	421
W-Change -2.2% 10.0% -11.4% 5.6% 0.0% -6.7% 3.6% 7.6% 4.5% -15.3% 11.6% 5.8% 0.7% 1.1% 0.5% -1.6% -1.1% 0.0% -1.2% -0.5% -1.4% Total: 7.8 829 832 831 871 861 839 876 857 847 894 948 896 870 890 867 875 882 875 863 858 853 846 Change 3 -1 40 -10 -22 37 -19 -10 47 54 -52 -2.6% 2.0% 0.9% 0.8% -7 -7 -12 -5 -5 -7 %-Change 0.4% -0.1% 4.8% -1.1% -2.6% 4.4% -2.2% -1.2% 5.5% 6.0% -5.5% -2.9% 2.3% -2.6% 0.9% 0.8% -1.4% -0.6% -0.6% -0.6% -0.6% -0.6% -0.6% -0.6% -0.6% -0.6% -0.6% -0.6% -0.6% -0.6% <	Change		-10	44	-55	24	0	-30	15	33	21	-75	48	-27	3	5	2	-7	-5	0	-5	-2	-6
Total: 7-8 829 832 831 871 861 839 876 857 847 894 948 896 870 890 867 875 882 875 863 858 853 846 Change 3 -1 40 -10 -22 37 -19 -10 47 54 -52 -26 20 -23 8 7 -7 -12 -5 -5 -7 %-Change 0.4% -0.1% 4.8% -1.1% -2.6% 4.4% -2.2% -1.2% 5.5% 6.0% -5.5% -2.9% 2.3% -2.6% 0.9% 0.8% -1.4% -0.6% <th< td=""><td>%-Change</td><td></td><td>-2.2%</td><td>10.0%</td><td>-11.4%</td><td>5.6%</td><td>0.0%</td><td>-6.7%</td><td>3.6%</td><td>7.6%</td><td>4.5%</td><td>-15.3%</td><td>11.6%</td><td>-5.8%</td><td>0.7%</td><td>1.1%</td><td>0.5%</td><td>-1.6%</td><td>-1.1%</td><td>0.0%</td><td>-1.2%</td><td>-0.5%</td><td>-1.4%</td></th<>	%-Change		-2.2%	10.0%	-11.4%	5.6%	0.0%	-6.7%	3.6%	7.6%	4.5%	-15.3%	11.6%	-5.8%	0.7%	1.1%	0.5%	-1.6%	-1.1%	0.0%	-1.2%	-0.5%	-1.4%
Total: 7-8 829 832 831 871 861 839 876 857 847 894 948 896 870 890 867 882 875 863 858 853 846 Change 3 -1 40 -10 -22 37 -19 -10 47 54 -52 -26 20 -23 8 7 -7 -12 -5 -5 -7 %-Change 0.4% -0.1% 4.8% -1.1% -2.6% 4.4% -2.2% -1.2% 5.5% 6.0% -5.5% -2.9% 2.3% -2.6% 0.9% 0.8% -1.4% -0.6% <	-						1																
Change 3 -1 40 -10 -22 37 -19 -10 47 54 -52 -26 20 -23 8 7 -7 -12 -5 -5 -7 %-Change 0.4% -0.1% 4.8% -1.1% -2.6% 4.4% -2.2% -1.2% 5.5% 6.0% -5.5% -2.9% 2.3% -2.6% 0.9% 0.8% -1.4% -0.6%	Total: 7-8	829	832	831	871	861	839	876	857	847	894	948	896	870	890	867	875	882	875	863	858	853	846
w-Change 0.4% -0.1% 4.8% -1.1% -2.6% 4.4% -2.2% -1.2% 5.5% 6.0% -5.5% -2.9% 2.3% -2.6% 0.9% 0.8% -0.8% -1.4% -0.6% -0.6% -0.6% 0.9% Total: 9-12 1.449 1.522 1.562 1.582 1.631 1.672 1.659 1.699 1.735 1.708 1.760 1.805 1.805 1.803 1.700 1.780 1.763 1.763 1.764 1.749 Change 73 40 20 49 41 -13 31 45 -27 20 32 48 -3 30 -32 -53 30 -17 3 5 -12 %-Change 5.0% 2.6% 1.3% 3.1% 2.5% -0.8% 1.9% 2.7% -1.6% 1.2% 1.9% 2.7% -0.2% 1.7% -1.7% -2.9% 1.7% -1.0% 0.2% -0.3% -0.7% -0.2% 1.7% -1.7% -2.9% 1.7% -1.0% 0.2% -0.3% -0.7%	Change		3	-1	40	-10	-22	37	-19	-10	47	54	-52	-26	20	-23	8	7	-7	-12	-5	-5	-7
Total: 9-12 1,449 1,522 1,562 1,582 1,631 1,672 1,659 1,690 1,735 1,708 1,728 1,803 1,805 1,803 1,803 1,780 1,763 1,764 1,749 Change 73 40 20 49 41 -13 31 45 -27 20 32 48 -3 30 -32 -53 30 -17 3 5 -12 %-Change 5.0% 2.6% 1.3% 3.1% 2.5% -0.8% 1.9% 2.7% -1.6% 1.2% 1.9% 2.7% -0.2% 1.7% -1.7% -2.9% 1.7% -1.0% 0.2% -0.3% -0.7% -0.7% -0.2% 1.7% -1.7% -2.9% 1.7% -1.0% 0.2% -0.3% -0.7% -0.7% -0.7% -0.2% 1.7% -1.7% -1.0% 0.2% -0.3% -0.7% -0.7% -0.7% -0.7% -0.7% -0.7% -0.7% -0.7% -0.7% -0.7% -0.7% -0.7% -0.7% -0.7% -0.7% -0.7% </td <td>%-Change</td> <td></td> <td>0.4%</td> <td>-0.1%</td> <td>4.8%</td> <td>-1.1%</td> <td>-2.6%</td> <td>4.4%</td> <td>-2.2%</td> <td>-1.2%</td> <td>5.5%</td> <td>6.0%</td> <td>-5.5%</td> <td>-2.9%</td> <td>2.3%</td> <td>-2.6%</td> <td>0.9%</td> <td>0.8%</td> <td>-0.8%</td> <td>-1.4%</td> <td>-0.6%</td> <td>-0.6%</td> <td>-0.8%</td>	%-Change		0.4%	-0.1%	4.8%	-1.1%	-2.6%	4.4%	-2.2%	-1.2%	5.5%	6.0%	-5.5%	-2.9%	2.3%	-2.6%	0.9%	0.8%	-0.8%	-1.4%	-0.6%	-0.6%	-0.8%
Total: 9-12 1,449 1,522 1,562 1,582 1,631 1,672 1,690 1,735 1,708 1,700 1,808 1,805																							
Change 73 40 20 49 41 -13 31 45 -27 20 32 48 -3 30 -32 -53 30 -17 3 5 -12 %-Change 5.0% 2.6% 1.3% 3.1% 2.5% -0.8% 1.9% 2.7% -1.6% 1.2% 1.9% 2.7% -0.2% 1.7% -1.7% -2.9% 1.7% -1.0% 0.2% -0.3% -0.7% Forecasts Developed Januar 2017	Total: 9-12	1,449	1,522	1,562	1,582	1,631	1,672	1,659	1,690	1,735	1,708	1,728	1,760	1,808	1,805	1,835	1,803	1,750	1,780	1,763	1,766	1,761	1,749
%-change 5.0% 2.6% 1.3% 3.1% 2.5% -0.8% 1.9% 2.7% -1.6% 1.2% 1.9% 2.7% -0.2% 1.7% -1.7% -2.9% 1.7% -1.0% 0.2% -0.3% -0.7% Forecasts Developed January 2017	Change		73	40	20	49	41	-13	31	45	-27	20	32	48	-3	30	-32	-53	30	-17	3	-5	-12
Forecasts Developed January 2017	%-Change		5.0%	2.6%	1.3%	3.1%	2.5%	-0.8%	1.9%	2.7%	-1.6%	1.2%	1.9%	2.7%	-0.2%	1.7%	-1.7%	-2.9%	1.7%	-1.0%	0.2%	-0.3%	-0.7%
	Forecasts D	eveloped]	anuary 2	017																			

Broadmeadow Elementary

	2010-11	2011-12	2012-13	2013-14	2014-15	2015-16	2016-17	2017-18	2018-19	2019-20	2020-21	2021-22	2022-23	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32
K	79	83	100	84	76	81	71	76	78	79	78	79	78	77	77	76	77	78	78	77	76	75
1	116	84	89	108	104	83	89	83	84	86	87	86	86	85	84	84	83	83	84	84	83	82
2	87	117	88	92	106	107	84	91	85	86	88	89	88	88	87	86	87	85	85	87	87	85
3	107	87	119	94	93	104	110	85	92	86	87	89	90	89	89	88	87	88	86	86	88	88
4	117	105	87	120	89	91	107	109	84	91	85	86	88	89	88	88	87	86	87	85	85	87
5	104	115	105	87	113	92	92	106	108	83	90	83	84	86	87	86	86	85	84	85	83	83
Total K-5	610	591	588	585	581	558	553	550	531	511	515	512	514	514	512	508	507	505	504	504	502	500

Total K-5	610	591	588	585	581	558	553	550	531	511	515	512	514	514	512	508	507	505	504	504	502	500
Change		-19	-3	-3	-4	-23	-5	-3	-19	-20	4	-3	2	0	-2	-4	-1	-2	-1	0	-2	-2
% Change		-3.1%	-0.5%	-0.5%	-0.7%	-4.0%	-0.9%	-0.5%	-3.5%	-3.8%	0.8%	-0.6%	0.4%	0.0%	-0.4%	-0.8%	-0.2%	-0.4%	-0.2%	0.0%	-0.4%	-0.4%

Forecasts Developed January 2017

Green Cells (2016-17 and earlier) are historical data

Blue Cells (2017-18 and later) are forcasted years

Eliot Elementary

	2010-11	2011-12	2012-13	2013-14	2014-15	2015-16	2016-17	2017-18	2018-19	2019-20	2020-21	2021-22	2022-23	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32
K	53	62	59	58	57	61	57	60	62	63	61	61	60	59	58	57	57	56	56	55	54	56
1	73	54	65	65	67	61	64	62	64	66	67	65	64	63	62	61	60	59	58	58	57	56
2	69	68	56	67	71	73	57	65	63	65	67	69	67	66	65	64	63	62	61	60	60	59
3	70	69	66	61	63	72	73	58	66	64	66	68	70	68	67	66	65	64	63	62	61	61
4	83	70	70	62	67	63	74	74	59	67	65	67	69	71	69	68	67	66	65	64	63	62
5	61	86	71	74	65	65	67	75	75	60	68	66	68	70	72	70	69	68	67	66	65	64
Total: K-5	409	409	387	387	390	395	392	394	389	385	394	396	398	397	393	386	381	375	370	365	360	358

Total: K-5	409	409	387	387	390	395	392	394	389	385	394	396	398	397	393	386	381	375	370	365	360	358
Change		0	-22	0	3	5	-3	2	-5	-4	9	2	2	-1	-4	-7	-5	-6	-5	-5	-5	-2
% Change		0.0%	-5.4%	0.0%	0.8%	1.3%	-0.8%	0.5%	-1.3%	-1.0%	2.3%	0.5%	0.5%	-0.3%	-1.0%	-1.8%	-1.3%	-1.6%	-1.3%	-1.4%	-1.4%	-0.6%

Forecasts Developed January 2017

Green Cells (2016-17 and earlier) are historical data

Hillside Elementary

_	2010-11	2011-12	2012-13	2013-14	2014-15	2015-16	2016-17	2017-18	2018-19	2019-20	2020-21	2021-22	2022-23	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32
K	61	73	72	71	57	82	76	79	80	81	79	76	75	73	73	71	71	69	68	66	64	65
1	64	67	76	73	79	62	82	82	84	85	86	84	82	81	79	78	76	75	73	72	70	68
2	73	63	66	72	75	88	71	85	85	87	88	89	87	85	84	82	81	79	78	76	75	72
3	72	76	61	73	72	80	87	72	86	86	88	90	91	89	87	86	84	83	81	80	78	77
4	100	68	77	59	76	76	79	88	73	87	87	89	91	92	90	88	89	87	85	83	82	80
5	59	98	67	81	62	77	77	80	89	74	88	89	91	93	94	92	90	91	89	87	85	84
Total: K-5	429	445	419	429	421	465	472	486	497	500	516	517	517	513	507	497	491	484	474	464	454	446

Total: K-5	429	445	419	429	421	465	472	486	497	500	516	517	517	513	507	497	491	484	474	464	454	446
Change		16	-26	10	-8	44	7	14	11	3	16	1	0	-4	-6	-10	-6	-7	-10	-10	-10	-8
% Change		3.7%	-5.8%	2.4%	-1.9%	10.5%	1.5%	3.0%	2.3%	0.6%	3.2%	0.2%	0.0%	-0.8%	-1.2%	-2.0%	-1.2%	-1.4%	-2.1%	-2.1%	-2.2%	-1.8%

Forecasts Developed January 2017

Green Cells (2016-17 and earlier) are historical data

Blue Cells (2017-18 and later) are forcasted years

Mitchell Elementary

	2010-11	2011-12	2012-13	2013-14	2014-15	2015-16	2016-17	2017-18	2018-19	2019-20	2020-21	2021-22	2022-23	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32
К	71	78	80	74	78	82	77	77	76	75	74	74	73	72	72	71	71	70	69	68	67	69
1	84	77	80	88	75	79	91	82	81	80	79	78	77	76	75	75	74	73	72	71	70	69
2	81	89	80	79	86	79	82	94	84	83	82	81	80	79	78	77	78	77	76	75	74	73
3	86	79	90	87	78	89	80	84	96	86	85	84	83	82	81	80	79	80	79	78	77	76
4	71	85	81	88	87	78	89	81	85	97	87	86	85	84	83	82	82	81	82	81	80	79
5	81	74	84	82	86	86	76	88	80	84	96	86	85	84	83	82	83	83	82	83	82	81
Total K-5	474	482	495	498	490	493	495	506	502	505	503	489	483	477	472	467	467	464	460	456	450	447

Total K-5	474	482	495	498	490	493	495	506	502	505	503	489	483	477	472	467	467	464	460	456	450	447
Change		8	13	3	-8	3	2	11	-4	3	-2	-14	-6	-6	-5	-5	0	-3	-4	-4	-6	-3
% Change		1.7%	2.7%	0.6%	-1.6%	0.6%	0.4%	2.2%	-0.8%	0.6%	-0.4%	-2.8%	-1.2%	-1.2%	-1.0%	-1.1%	0.0%	-0.6%	-0.9%	-0.9%	-1.3%	-0.7%

Forecasts Developed January 2017

Green Cells (2016-17 and earlier) are historical data

Newman Elementary

_	2010-11	2011-12	2012-13	2013-14	2014-15	2015-16	2016-17	2017-18	2018-19	2019-20	2020-21	2021-22	2022-23	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32
K	99	102	103	119	97	98	88	92	92	91	90	90	89	88	87	87	86	85	84	84	83	84
1	102	102	109	107	124	102	107	99	98	98	97	96	95	94	93	92	92	90	89	88	87	86
2	112	110	100	109	106	124	103	109	101	100	100	99	98	97	96	95	94	94	92	91	90	89
3	101	106	114	98	110	105	123	102	108	100	99	99	98	97	96	95	96	95	95	93	92	91
4	114	103	104	115	90	107	106	122	101	107	99	98	98	97	96	95	96	97	96	96	94	93
5	125	118	100	112	113	95	113	109	126	104	110	101	100	100	99	98	97	98	99	98	98	96
Total K-5	653	641	630	660	640	631	640	633	626	600	595	583	578	573	567	562	561	559	555	550	544	539

Total K-5	653	641	630	660	640	631	640	633	626	600	595	583	578	573	567	562	561	559	555	550	544	539
Change		-12	-11	30	-20	-9	9	-7	-7	-26	-5	-12	-5	-5	-6	-5	-1	-2	-4	-5	-6	-5
% Change		-1.8%	-1.7%	4.8%	-3.0%	-1.4%	1.4%	-1.1%	-1.1%	-4.2%	-0.8%	-2.0%	-0.9%	-0.9%	-1.0%	-0.9%	-0.2%	-0.4%	-0.7%	-0.9%	-1.1%	-0.9%

Forecasts Developed January 2017

Green Cells (2016-17 and earlier) are historical data

Blue Cells (2017-18 and later) are forcasted years

High Rock School

	2010-11	2011-12	2012-13	2013-14	2014-15	2015-16	2016-17	2017-18	2018-19	2019-20	2020-21	2021-22	2022-23	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32
6	448	438	482	427	451	451	421	436	469	490	415	463	436	439	444	446	439	434	434	429	427	421
Total: 6	448	438	482	427	451	451	421	436	469	490	415	463	436	439	444	446	439	434	434	429	427	421

Total: 6	448	438	482	427	451	451	421	436	469	490	415	463	436	439	444	446	439	434	434	429	427	421
Change		-10	44	-55	24	0	-30	15	33	21	-75	48	-27	3	5	2	-7	-5	0	-5	-2	-6
% Change		-2.2%	10.0%	-11.4%	5.6%	0.0%	-6.7%	3.6%	7.6%	4.5%	-15.3%	11.6%	-5.8%	0.7%	1.1%	0.5%	-1.6%	-1.1%	0.0%	-1.2%	-0.5%	-1.4%

Forecasts Developed January 2017

Green Cells (2016-17 and earlier) are historical data

Pollard Middle School

	2010-11	2011-12	2012-13	2013-14	2014-15	2015-16	2016-17	2017-18	2018-19	2019-20	2020-21	2021-22	2022-23	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32
7	424	413	421	467	404	439	445	419	434	467	488	413	461	434	437	442	442	435	430	430	425	423
8	405	419	410	404	457	400	431	438	413	427	460	483	409	456	430	433	440	440	433	428	428	423
Total: 7-8	829	832	831	871	861	839	876	857	847	894	948	896	870	890	867	875	882	875	863	858	853	846
T (1 																						
Total: 7-8	829	832	831	871	861	839	876	857	847	894	948	896	870	890	867	875	882	875	863	858	853	846
Total: 7-8 Change	829	832 3	831 -1	871 40	861 -10	839 -22	876 37	857 -19	847 -10	894 47	948 54	896 -52	870 -26	890	867 -23	875	882	875 -7	863	858 -5	853 -5	846 -7
Change % Change	829	832 3 0.4%	831 -1 -0.1%	871 40 4.8%	861 -10 -1.1%	839 -22 -2.6%	876 37 4.4%	857 -19 -2.2%	847 -10 -1.2%	894 47 5.5%	948 54 6.0%	896 -52 -5.5%	870 -26 -2.9%	890 20 2.3%	867 -23 -2.6%	875 8 0.9%	882 7 0.8%	875 -7 -0.8%	863 -12 -1.4%	858 -5 -0.6%	853 -5 -0.6%	846 -7 -0.8%

Green Cells (2016-17 and earlier) are historical data

Blue Cells (2017-18 and later) are forcasted years

Needham High School

	2010-11	2011-12	2012-13	2013-14	2014-15	2015-16	2016-17	2017-18	2018-19	2019-20	2020-21	2021-22	2022-23	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32
9	380	400	420	414	400	449	416	440	447	421	436	472	495	419	467	439	442	449	449	442	437	437
10	373	371	398	417	418	396	446	414	438	445	419	434	470	493	417	465	437	440	447	447	440	435
11	367	378	369	382	416	407	396	442	410	434	441	415	430	465	488	413	460	433	436	443	443	436
12	329	373	366	363	389	412	401	394	440	408	432	439	413	428	463	486	411	458	431	434	441	441
Total: 9-12	1,449	1,522	1,553	1,576	1,623	1,664	1,659	1,690	1,735	1,708	1,728	1,760	1,808	1,805	1,835	1,803	1,750	1,780	1,763	1,766	1,761	1,749

Total: 9-12	1,449	1,522	1,553	1,576	1,623	1,664	1,659	1,690	1,735	1,708	1,728	1,760	1,808	1,805	1,835	1,803	1,750	1,780	1,763	1,766	1,761	1,749
Change		73	31	23	47	41	-5	31	45	-27	20	32	48	-3	30	-32	-53	30	-17	3	-5	-12
% Change		5.0%	2.0%	1.5%	3.0%	2.5%	-0.3%	1.9%	2.7%	-1.6%	1.2%	1.9%	2.7%	-0.2%	1.7%	-1.7%	-2.9%	1.7%	-1.0%	0.2%	-0.3%	-0.7%

Forecasts Developed January 2017

Green Cells (2016-17 and earlier) are historical data

Massachusetts

